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ABSTRACT

Maximum Likelihood estimation theory can be used to develop
optimal timing recovery schemes for digital communication sys-
tems. Tunable digital interpolation filters are commonly used for
symbol timing adjustment. The so-called gathering structure of-
fers an efficient and flexible realization structure for such an in-
terpolation task. In this paper we propose a feedforward timing
estimation scheme efficiently utilizing the tunable gathering filter
structure for FIR filters and leveraging an algorithm previously de-
veloped for the so-called Farrow structure. The scheme is based on
a low-order polynomial approximation of the log likelihood func-
tion. Furthermore, the scheme is extended for the IIR gathering
structure with transient suppression, and the performance of FIR
and IIR implementations and their computational complexity are
compared in example simulations.

1. INTRODUCTION

The new trend is to use digital receivers where the sampling of
the demodulated (baseband) signal is performed by a fixed sam-
pling rate oscillator. This new design approach reduces the re-
quired analog components as most of the receiver functions are
then performed digitally. This in turn increases flexibility, config-
urability, and integrability of the receiver contributing to the soft-
ware radio concept which is the natural progression of digital radio
receivers towards multimode, multistandard terminals in which the
radio functionalities are defined by software.

This paper addresses the task of digital symbol synchroniza-
tion in a digital receiver. Examples of previously published articles
on developing symbol timing estimation algorithms using FIR fil-
ters include [2, 3, 5, 9]. IIR filters, however, often provide more
efficient implementation than their FIR counterparts though they
may suffer from transients caused by sudden coefficient changes.
In this paper we propose novel efficient implementations for Max-
imum Likelihood (ML) [5] symbol timing estimation and synchro-
nization utilizing the so-called gathering structures [6] for both
FIR and IIR filters.

The object of this paper is to show if the IIR implementation
for synchronization can match up to the FIR implementation in
terms of performance and computational complexity. In practice,
simple implementations are usually the best, and thus we will eval-
uate the performance of low-order FIR and IIR FD filters, both
having the maximally flat group delay property, namely the La-
grange and the Thiran FD approximations [10].

Figure 1: Digital receiver using interpolation for symbol synchro-
nization.

The paper is organized as follows: In Section 2 the fixed sam-
pling rate receiver model is viewed. In Section 3 the ML timing
estimation and synchronization scheme presented in [5] is given a
novel more efficient implementation using both FIR and IIR gath-
ering structures. The computational complexities and synchro-
nization performance of the different FIR and IIR implementations
are evaluated in Section 4 and finally, Section 5 concludes the pa-
per.

2. A SCHEME FOR ML TIMING ESTIMATION

Fig. 1 shows a receiver structure where symbol synchronization
is performed digitally using a fractional-delay (FD) filter. The re-
ceived signal r(k) has been first digitally sampled at a fixed sam-
pling rate FS = 1=TS . After sampling it is then passed through a
matched receive filter hr(k) and a channel equalizer (EQ). Before
symbol detection the timing offset is corrected using a FD inter-
polation filter and ML feed-forward timing estimation. Having the
matched filter outside the timing adjustment loop often allows us-
ing lower sampling rates than otherwise [4].

According to [1, 5] the ML estimate of the log likelihood func-
tion (LLF) for symbol timing estimation is given as

�(d) =

MX
k=1

â
�

km̂(k; d); (1)

where âk are the correct or estimated symbol values, m̂(k; d) the
fractionally delayed output samples of the matched filter, d a frac-
tional delay, and M the number of used past symbols. The delay is
assumed to remain constant within the block ofM symbols. In our
discussion we will assume a training signal and thus the symbols
in (1) are considered known, i.e., fâkg ! fakg.

The ML feed-forward fractional delay estimate d̂ at sampling



Figure 2: Gathering structure with multiplexed output history for
IIR allpass FD filters. The equations Fkldi used in ML timing
estimation are pointed out.

rate is specified as

d̂ =
�̂

TS
= arg

�
max
d̂

f�(d̂)g

�
(2)

where �̂ is the timing error estimate in seconds. Provided we have
an interpolation filter that can produce m̂(k; d) then �(d) can then
be evaluated for any chosen value(s) of d. For example, for a
second-order polynomial approximation �(d) � Ad

2 + Bd+ C

the maximum-point estimate d̂ can be easily found in closed form
using a fixed grid fdig for i 2 f0; 1; 2g [3].

3. TIMING ADJUSTMENT USING GATHERING
STRUCTURES

In this section we propose that the gathering structures introduced
in [6] can be used efficiently for implementing tunable FD filters
and simultaneously obtaining the values of the LLF in (1) at the
desired values of d. The structures presented here are readily ex-
tendible for other orders P of polynomial approximation of �(d).

3.1. FIR Structure

According to [6] we can express (1) as

�(di) =
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k=1

â
�

kMkdi
; i = 0; 1; 2; : : : ; P (3)

where

Mkdi
=

LX
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l

i =
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� NX
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�
d
l

i (4)

whose values Fkl may be obtained easily from an FIR gathering
structure, in manner similar to what is shown for IIR gathering
structures in Fig. 2.

3.1.1. Oversampling

If we oversample the input signal by an integer ratio O we end up
with O sets of candidate symbols (polyphase components) from
which any one set can be most optimum at a time. This means that
we must evaluate

��(di) =

MX
k=1

â
�

kM(Ok��)di ; for � = 0; 1; 2; : : : ; O � 1 (5)

for all the different polyphase components and choose the polyphase
components for which ��(d̂) is largest.

3.2. IIR Allpass Structure

This subsection proposes a novel approximation of the LLF (1)
utilizing the IIR allpass gathering structure in [6] as
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where

Fkldi =
NX
n=1

[m(k �N + n)� m̂di
(k � n)]eln (7)

The peak point of the LLF is independent of m(k � N), but the
full form of Eq. (6) is preferred, as in this way the previously
processed past samples can now be reused from memory. For sig-
nals oversampled by integer ratios the method introduced above in
context with FIR filters in (5) applies for IIR filters as well.

The values Fkldi may be obtained easily from the IIR gather-
ing structure as shown in Fig. 2. The subscript di expresses the
effect of the feedback in a recursive filter — the different delay
values must be processed in separate feedback loops. Transient
suppression [8] may be used to enhance the quality of the symbol
estimates at the estimated delays d̂.

3.2.1. Thiran g Allpass FD Filter

For “Thiran g” allpass FD approximation the equation (6) can be
modified according to [7] in order to improve the quality of the FD
approximation by incorporating the multiplier g(d) into the loop
as Mkdi

� g(di)
P

L

l=1 Fkldid
l

i.

4. SIMULATIONS

The block size used for timing estimation was M = 64 symbols.
The total number of transmitted symbols was K = 256 QAM-
64 (RRC, � = 0:35) symbols and the results were obtained by
evaluating the E = 128 symbols received after the intial transient
over a SNR = 20 dB channel. In order to keep things as simple
as possible, an oversampling ratio of O = 2 was used. The LLF
(3) was approximated using a P = 3rd-order polynomial as in [5].



In order to compare the performance of FIR and IIR FD filters
we implemented a Lagrange [10] FIR FD filter using the gathering
structure, a Thiran g IIR FD filter as explained in [7], and also
a “Thiran (polyn.)” whose constant coefficients are a polynomial
approximation (in d) of the ideal Thiran allpass filter coefficients
[10].

Table 1 shows the implementation complexities of the differ-
ent FD filters in terms of delay elements, variable multipliers, and
constant coefficients. For handling the block of M previously re-
ceived symbols, a variety of implementations is available, but in
order to save on computation we chose the reusability approach in
which the previously computed symbol value estimates are stored
into a bank of (M�1)(P+1) delay elements. Using this approach
the excess implementation complexity from block-processing of
the M symbols is the same for both FIR and IIR, and thus not
shown in Table 1.

Table 1: Implementation complexity: Number of delay elements,
number of variable multipliers, and number of constant coeffi-
cients, versus measured performance (the excess MSE value in
brackets is measured using transient suppression).

fclkg max avg
FD Filter Type z

�1
d felkg MSE MSE

Thiran g [dB] [dB]
L = N

N = 1; I = 5 2 6 4 -21(-21) -34(-34)
N = 2; I = 5 4 7 10 -26(-29) -39(-40)
N = 3; I = 5 6 8 13 -21(-39) -42(-42)
Thiran (polyn.)
N = 1; L = 2 2 2 3 -21(-21) -35(-34)
N = L = 2 4 2 6 -20(-30) -38(-39)
N = L = 3 6 3 12 -19(-39) -42(-42)
Lagrange
N = L = 2 2 2 9 -24 -30
N = L = 3 3 3 16 -23 -46

4.1. Results

In our simulations we sweeped the delay value (relative to the sym-
bol rate) from d = �0:5 to d = 0:5 in 40 steps. For each delay
estimate we measured the timing jitter variance Varfd̂ � dg, the
timing jitter mean Avgfd̂�dg, and the excess MSE caused by the
interpolation relative to ideal synchronization as

MSE = 10 log10(Avgfj�j2g=Pm); (8)

where � = m̂(k; d̂)�m(k; d) and Pm = Avgfjm(k; d)j2g.
Peak and average MSE measurements show that the second-

order Lagrange FD filter has performance comparable to a first-
order Thiran FD filter (see Table 1). Performance measurement
results for different orders of the filters are plotted in figures 3, 4,
and 5. In general the excess MSE of the allpass filter varies less
over different values of d than the MSE of the Lagrange FIR FD
filter.

In order to simplify the IIR implementation we compared the
Thiran g performance against a polynomially approximated Thi-
ran. As it turns out, the performance of this Thiran (polyn.) is
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Figure 3: Timing jitter variance, timing jitter mean, and excess
MSE of the Lagrange FIR gathering FD filter. The dash-dot lines
represent a first-order (N = 1), the dashed lines a second-order
(N = 2), and the solid line a third-order (N = 3) implementation,
respectively.

similar to the Thiran g (see Fig. 5) while the implementation com-
plexity of a first-order polynomially approximated Thiran with-
out transient suppression is even less than that of an equivalent
(second-order) Lagrange FIR FD filter (see Table 1). Using the IIR
filters without transient suppression results in only minor degrada-
tion in synchronization performance as can be seen in Fig. 6.

5. CONCLUSIONS

In this paper we derived both FIR and IIR gathering structures for
ML symbol synchronization. The synchronization performance
was measured for both FIR and IIR FD implementations with dif-
ferent computational complexities. Furthermore, the IIR FD fil-
ters’ performance is shown both with and without transient sup-
pression indicating that when used for a synchronization applica-
tion, it is not necessary to complicate the IIR design with transient
suppression circuitry.

We conclude that IIR FD filters are a worthwile choice for
synchronization applications. For higher-order implementations,
models other than the Thiran FD approximation could be used be-
cause its performance improves only very little with increasing fil-
ter orders.

It remains a future research topic to extend the used ML esti-
mation scheme for noninteger oversampling ratios. We note, how-
ever, that when d varies a lot the transient energy in IIR filters
grows. This might eventually render the transient-suppressed IIR
FD filters overcostly for such applications.
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Figure 4: Timing jitter variance, timing jitter mean, and excess
MSE of the Thiran g IIR gathering FD filter. The dash-dot lines
represent a first-order (N = 1), the dashed lines a second-order
(N = 2), and the solid line a third-order (N = 3) implementation,
respectively.
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Figure 5: Timing jitter variance, timing jitter mean, and excess
MSE of the Thiran (polyn.) IIR gathering FD filter. The dash-dot
lines represent a first-order (N = 1), the dashed lines a second-
order (N = 2), and the solid line a third-order (N = 3) imple-
mentation, respectively.
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Figure 6: Excess MSE of different orders of the IIR FD filters with
and without transient suppression; IIR filter order N = 1 on top,
below it N = 2 and N = 3. Solid and dashed lines represent
the Thiran g with and without transient suppression, respectively.
Dash-dotted and dotted lines represent the Thiran (polyn.) with
and without transient suppression, respectively.


