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polation between samples. It finds applications in nu-

merous fields of signal processing, including
communications, array processing, speech processing, and mu-
sic technology. In this article, we present a comprehensive
review of FIR and allpass filter design techniques for ban-
dlimited approximation of a fractional digital delay. Emphasis
is on simple and efficient methods that are well suited for fast

!- fractional delay filter is a device for bandlimited inter-
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coefficient update or continuous control of the delay value.
Various new approaches are proposed and sevéral examples
are provided to illustrate the performance of the methods. We
also discuss the implementation complexity of the algo-
rithms. We focus on four applications where fractional delay
filters are needed: synchronization of digital modems, incom-
mensurate sampling rate conversion, high-resolution pitch
prediction, and sound synthesis of musical instruments.
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Overview

One fundamental advantage of digital signal processing tech-
niques over traditional analog methods is the easy implemen-
tation of a constant delay: the signal samples are simply
stored in a buffer memory for the given time. This technique
works perfectly as long as the desired delay is a multiple of
the used sample interval. However, when a delay of a fraction
of the sample interval is needed or, particularly, if it is desired
to control the delay value continuously, more sophisticated
methods must be used.

The problem of implementing a fractional delay (FD) by
digital means occurs in several applications. In one of the first
treatments on the subject [23], a digital phase shifter was pro-
posed for three problems: echo cancellation, phased-array an-
tenna processing, and pitch-synchronous synthesis of speech.
Later papers have included applications such as time delay
estimation [88, 104], null steering in the direction pattern of
antenna arrays [48, 101, 102], timing adjustment and interpola-
tion in digital modems [29, 66, 67, 30,31, 33,32, 7, 27, 136, 10,
95, 96, 72], sampling rate conversion systems [3, 112, 53],
stabilization of feedback systems [111], speech coding [50, 51,
68,70, 78], speech-assisted video processing [18, 19], sub-pixel
interpolation [20, 47], modeling of the human vocal tract [108,
58, 122, 125, 128, 131], and modeling of musical instruments
[39, 42, 110, 120, 121, 123, 127]. A comprehensive study of
modeling of acoustic tubes using fractional delay filters has been
presented in [126] and [135]. There are many potential applica-
tions in video processing, such as frame interpolation and sub-
pixel interpolation [20].

As a consequence of the wide range of application areas, the
results on approximation of a fractional delay are scattered in
the literature and difficult to find. The proposed design tech-
niques concentrate almost exclusively on finite-impulse-re-
sponse (FIR) filters. Moreover, the approach in the majority of
papers known to us is limited. The problem is viewed mainly as
a time-domain interpolation problem, often leading to a modi-
fication of standard sampling rate conversion methods [23, 24,
2], or to the use of the traditional Lagrange interpolation tech-

nique [58, 66, 67, 37]. One of the few textbook treatments on
FD filter design can be found in [93].

Here, we take a filter designer’s point of view on the
fractional delay problem. After formulating the (generally
complex-valued) approximation problem in the frequency
domain, we systematically review the well-established filter
design theory and search for efficient solutions to this par-
ticular problem. Our article thus has a review nature and a
serious effort has been made to find all the relevant literature
addressing the problem. Besides giving a systematic presen-
tation of previous results, we use the employed frequency-
domain approach to give deeper insight to many methods and
also to reveal useful design techniques that have previously
not been considered for this problem.

Preliminaries
Notation and Concepts

Delaying a continuous-time signal x.(f) by an amount #; is
conceptually simple. A continuous-time ideal delay can be
defined as a linear operator, L., which yields its output, y.(¢)
as

yc(t)=Lc{xc(t)}:xc(t_tD) (1)

(Fig. 1a). Delaying of a uniformly sampled bandlimited
(baseband) digital signal must be treated with care. When we
simply convert Eq. 1 into discrete time by sampling at time
instants ¢ = nT, where n is an integer and T is the sampling
interval, we obtain

y(m) = L{x(n)} = x(n—D) )]

where D is a positive real number that can be split into the
integer and fractional part as

D=Int(D)+d 3)

However, Eq. 2 is meaningful only for integer values of
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1. Delaying of (a) a continuous-time signal and (b) a discrete-
time signal.

D. Inthat case, the output sample is one of the previous signal
samples, but for noninteger values of D, the output value
would lie somewhere between two samples, which is impos-
sible (Fig. 1b). Instead, the appropriate values on the sam-
pling grid must be found via bandlimited interpolation (the
problem of approximating negative values of D calls for
extrapolation or prediction algorithms, which are beyond the
scope of this article).

The problem can be solved by viewing a delay as a
resampling process. The desired solution can be obtained by
first reconstructing the continuous bandlimited signal and
then resampling it after shifting [30, 31]. The task is thus
related to interpolation in multirate filter design techniques
[23, 24, 118, 119] or sampling rate conversion in general [5,
6,9,91,92, 112, 55]. Note, however that our basic constraint
is to keep the sampling rate unchanged.

As in multirate applications, we need not perform recon-
struction and resampling explicitly, but they can be reduced
to appropriate linear filtering operating at the chosen sam-
pling rate. A key issue is how to formulate the problem such
that well-advanced filter design theory can be utilized in an
efficient manner.

Like any linear time-invariant operation, delaying can
equivalently be considered in a suitable transform domain.
The z-domain transfer function of the system of Fig. 2 is
obtained formally as

Y@ Px@)  p

TaD=50~"%0 - ° @)

where X(z) = Z{s(n)} and Y(z) are the z-transforms of x(n)
and y(n), respectively, and the subscript ‘id” will stand for the
desired (ideal) response. In Eq. 4, we have employed the
following property of the z-transform:

Z{x(n—D)}=2""X(2) ©)
which, strictly speaking, holds for integer values of D only.

The term 77 represents precisely the ideal filter of Fig. 2 in
the z-domain, which performs the desired bandlimited delay
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operation at the used sampling rate. Clearly, z° cannot be
realized exactly for noninteger D, but it must be approxi-
mated in some way.

One approach for approximation is to construct a series
expansion for z” as proposed in [90]. However, a more
general and fruitful approach is to formulate the design
objective in the frequency domain. In many applications the
specifications are easier to give in the frequency domain, and
numerous design techniques are available. The frequency
response (Fourier transform) of the delaying system of Fig.
2 is obtained from Eq. 4 by setting z = ™

Hiy(e!®)=e P (6)

where w=27ft is the normalized angular frequency, and T is
the sample interval. The desired frequency response is thus a
complex-valued function that specifies both the magnitude
and the phase response as

|Hyg(e’®)I=1 for all © ™

arg{H;;(e’®)} = ©,4(@) =D (8)

respectively. The phase information is often represented in
the form of group delay, defined as the negative frequency
derivative of the phase

__08(v) :
B @=m, (9a)
or via phase delay
T, (@)= _M

(9b)

(see [81] or [84]).

x(n)—+~—>y(n) =x(n - D)

2. An ideal discrete-time delay system.

Both the group delay and the phase delay are measures for
the delay of the system. Their difference is typically illus-
trated by considering an amplitude modulated signal for
which the phase delay tells the delay of the carrier signal and
the group delay tells that of the envelope (baséband signal)
[81]. When the phase is exactly linear, the two delay measures.
yield identical results. For the frequency response Eq. 6, both
the group delay and the phase delay are equal to the constant
value D in the whole frequency band, i.e.,

Tpia{®)=D (102)

Teia(@)=D (10b)

Which of the three delay measures—phase, group delay,
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or phase delay—should be used? The physical viewpoint
suggests the use of the phase or phase delay when the delay-
ing of individual sinusoidal components of the signal is of
interest. The group delay and the phase delay give flat curves
for linear or almost-linear systems, which is more illustrative
than the often steep-slope phase curve. As we are primarily
interested in the delay of sinusoidal components, we have
chosen to use the phase delay in the plots of this article.
However, when introducing approximation methods, the
phase or the group delay are also employed.

To summarize our discussion, we can use the ideal z-do-
main transfer function Eq. 4 or the ideal frequency response
Eq. 6 as the design objective. These functions are complex-
valued so that both the real and imaginary parts must be taken
into account, separately or together. Alternatively, we can
express this information in terms of magnitude and phase
where the phase can be replaced by the group delay or the
phase delay.
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3. Impulse response of an ideal delay filter with the delay a) D =

3andb) D =3.3.

Ideal Solution

Assuming that the (real-valued) discrete-time signal repre-
sents a bandlimited baseband signal, the implementation of a
constant delay can be considered as an approximation of the
ideal discrete-time linear-phase allpass filter with unity mag-
nitude and constant group delay of the given value D. The
corresponding impulse response is obtained via the inverse
discrete-time Fourier transform [84]:

n 0 .
h(n)= 1 JH(eJm)eJ(’)”d(n for all n .
27 n an

Substitution of Eq. 6 into Eq. 11 yields the solution for the
ideal impulse response as

sin[t(n — D)]

=sinc(n— D) for all n
m(n— D)

h =
(") (12)

which has the shape of the familiar sinc function defined as
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sinc(x) = M

(13)

When the desired delay D assumes an integer value, the
impulse response Eq. 12 reduces to a single impulse atn =D,
but for noninteger values of D the impulse response is an
infinitely long, shifted and sampled version of the sinc func-
tion (Fig. 3). Unfortunately, the ideal impulse response is not
only infinitely long but also noncausal, which makes it im-
possible to implement it in real-time applications.

Equation 12 gives an answer to the original problem, i.e.,
where the delayed signal value should be placed as it cannot
be put “between the samples.” In the ideal case, it is to be
spread over all the discrete-time signal values, weighted by
appropriate values of the sinc function.

This simple result (Eq. 12) is of fundamental importance
since, whatever method is used, the impulse response of the
approximating (real-coefficient) filter must imitate this ideal
response in some meaningful sense. Itis also evident that with
a finite-order causal FIR or IIR filter the ideal response can
only be approximated. Furthermore, the ideal solution from
Eq. 12 can be utilized in the formulation of the approximation
problem in the time domain, as will be discussed in more
detail in the following sections.

Fractional Delay Approximation
Using FIR Filters

Let us consider the approximation of the ideal fractional
delay D by an Nth-order (length L = N + 1) FIR filter with the
z-domain transfer function

N
H(z)= Y h(m)z™"
z Zb n)z (14)

An FIR filter is typically implemented with the direct form
structure of Fig. 4. It is now desired to determine the coeffi-
cients h(n) such that the chosen norm of the frequency-do-
main error function

E(e’)= H(e™®) - Hyg (") (15)
is minimized. Note that both the desired function Hi((¢w) and
the error function are complex-valued. This complicates the
solution in general as compared to a real-valued approxima-
tion problem in linear-phase FIR filter design [84]. However,
simple solutions can still be found as will be shown in the
following example.

4. Direct form implementation of an Nth-order FIR filter.
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Application 1:
Synchronization in Digital Modems

receiver is to detect the transmitted data symbols

as reliably as possible. To this end, the receiver
must be synchronized to the symbols of the incom-
ing data signal. Since the frequency ‘of an analog
oscillator tends to vary with time and temperature,
and in mobile communications Doppler frequency
shifts must also be accounted for, it is essential that
the synchronization is: monitored during: all the
transmission.

A traditional solution for symbol synchronization
has been to use an analog feedback or feedforward
control loop to adjust the phase of a local clock at
the receiver so that the sampling frequency and the
sampling instants are adapted to the incoming data
signal. An example of this kind of ‘a receiver struc-
ture is illustrated in Fig. A [32].

Since the postprocessing of the sampled data

In digital data transmission, the main task of the

signal (imatched filtering and data detection} is per-
formed digitally anyway, it is often advantageousto
implement the synchronization using digital tech-
niques as well. A digital solution is outlined in Fig.
B. The local oscillator controlling the sampling is
now autonomous, and all the timing is fine-tuned in
the digital domain by controlling an appropriate FD
filter. For this application, low-order FD filters are
usually sufficient. ‘A ‘third-order FIR filter imple-
mented with the Farrow structure has been . pro-
posed by Erup, et al. [27]. For excellent overviews
of FD filter design for synchronization applications,
see [32],[27], and [72].

An alternative to a separate FD filter for synchroni-
zation isto embed the delay controlin another filtering
function, i.e., in.a matched filter. This approach has
been studied in [95] and [96]. The application of FD
filters or interpolators to synchronization of modems
has also been considered in [29], [8]; [30], [31], [66],
[671, 1331, [7], and [10].

pat Analog AD x{n) Digital e
S Processor Converter Processor T
Timing Sampling
Control Clock

Fig. A. Analog synchronization via controlling the sampling
time (after [32]).

AD f1) n=Dy| - Digital
i ‘5‘—)0 FD Filter }A——J’{ Processor!—’
'y D
Sampling
Clock

Timing
Control

Fig. B. Digital synchronization via an FD filter (adapted from
1321

Least Squared Error Solutions for FIR Filters

(1) Direct Least Squared Integral Error FIR Design

A mathematically straightforward solution to the fractional
delay problem is obtained by a least squared error (LS) type
design. The L, norm [84] of the error function can be defined
as

n
E, :iﬁE(ef“’)P do
To

n
= L1H(E) - Hyg ()P doo
) (16)

(The subscript 1 in E\ denotes here the particular error meas-
ure, not the chosen L, norm.)

Via the Parseval relation this frequency-domain error
measure can be converted into the time domain, resulting in
the alternative expression

E = SIhn)— hyg(n)P

n=—oo

a7
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which facilitates the use of the ideal solution for hi.(n) derived
in the previous section. It is readily seen that, as is the case
with linear-phase FIR filter design, the L,-optimal Nth-order
FIR filter is obtained by simply truncating the ideal impulse
response to L= N + 1 terms [84]. The optimal causal solution
can be expressed as

A sinc(n—D) forM<n<M+N
) _{ 0 otherwise (18)
where M is the (integer) time index of the first nonzero value
of the impulse response. For causality, it must be assumed M
0. If the desired delay D is very large, it is practical to realize
part of it as a chain of M unit delays and the rest with an FD
filter. The solution Eq. 18 can be modified for approximation
in the general lowpass interval (0, o), which yields the
impulse response

h(n) = asincfo(n—D)] forM<n<M+N
= 0 otherwise

19

The resulting approximation error of Eq. 18 or Eq. 19 can
be expressed in the time domain as:
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Application 2: Incommensurate
Sampling Rate Conversion

the needed delay values and 2) a computationally
efficient FD filter whose coefficients change for

every output sample. A blogk dlag?am of anincom-

hanging the sampling rate of a digital signal

is straightforward as long as the ratio of the
or a ratio of small integers (see [24], [119], and [6]).
This kind of sampling rate conversion is imple-
mented efficiently with a polyphase structure,
which can be considered as a periodically time-vary-
ing filter. Each polyphase branch is a fractional
delay filter approximating an integer number of

_is presented in Fig. B.
input and output sampling rates is an integer

mensurate-ratio sampl_mg rate conversion system

~ Amultistage FIR interpolator structure was used
in [57] for conversion ratios which involve large
integer numbers, Ramstad (81, [92} has considered

several approaches such as a hybrid techmque

combining a high-order FIR interpolator wrth a low- 5
order Lagrange interpolator. The same prmclptef
was proposed in [103] where an efficient table look-

fractions of the input sample interval.

rate (irrational) ratios is more difficult. A conceptu-

The sampling rate conversion for incommensu-  coefficient update was employed. The two-stage

up technique with linear interpolation for FD filter

ally simple solution ‘is obtained using fractional

delay filters. Figure A illustrates two sampling grlds
where the locations of input and the deswed output

approach has been extended using a spline interpo-
lator as an FD filter in the second stage [26). In[112},
a high-quality ﬂxe&caefhment {IR interpolator was
employed as a first stage to reduce the complexity

samples are shown on the time axis. It is obvious

of the time-varying FIR FD filter. The use of spline

that every output sample can be obtained from the

_ interpolator for sampling rate conversion was pro-
input sampies by applying an FD filter approximat-

ing an appropriate delay dk. The essential tasks are  the Farrow structure was considered in [55]. Other |

posedin{137]. A Lagrange interpolator realized with

thus to implement 1) a control unit that computes references on the topic in xci ude I3L §B2], 5&&[»86}
: : SEn e
it scheale g Ml e b
{ « : ‘ v Gt
: ; i i
Qutput -‘;- o e - .
: i Sampling Delay Sampiing
a b rate f Control | ratefs
Detay TG e % 7l | e : - Ly .
Fig. A: Hllustration of the sampling grids of two signals sam- Fig. B. System for incommensurate-ratio sampling rate conver-
pled at rates fs1 and fso, respectively, and the fractional delays,  sion. “ . - -
dy, between the contiguous samples of these signals. (1

ilhid(n)lz

n=M+N+1

M-1
= ¥ I+

n=—oo

(20)

which leads to two important observations. First, the approxi-
mation error clearly decreases as the filter order increases.
Second, the smallest error for a given filter order is obtained
when the overall delay D is placed at the ‘center of gravity’
of the ideal impulse response [81], i.e.,

Round (D)—%,— for even N

Int (D)— NT—I for odd N

@n

where Round () denotes rounding to the nearest integer.
This is due to the fact that the values of the sinc function are
largest in magnitude around the center value (n = D) which
should thus be placed in the middle of the truncated impulse
response. The rule Eq. 21 generally applies for other approxima-
tion criteria as well. In [46], a related stochastic case was consid-
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ered and it was shown that linear interpolation from N samples
of an autoregressive process yields a minimum least squared error
when interpolating the midpoint value of the data record.

Moreover, it is observed that for a nonzero M a part of the
total delay D is implemented by a cascade of M unit delay
elements. Clearly, the total delay can be made arbitrarily
long. However, it cannot be made arbitrarily short without
affecting the precision of approximation which depends on
the filter length L = N + 1. In other words, the desired total
delay D sets an upper bound for the precision of approxima-
tion, whatever approximation criterion is used.

To simplify notation, we set M = 0 for the rest of the article
and assume that the filter order is chosen such that Eq. 21
holds. Additional delays can always be included in the system
when needed. Although optimal in the L, sense, the truncated
impulse response (Eq. 18) has a well-known feature, the
Gibbs phenomenon, which causes ripple in the magnitude
response. This is usually not desired. In fullband approxima-
tion, the Gibbs phenomenon means deterioration of the
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5. Magnitude responses of truncated LS design with halfband ap-
proximation (o = 0.5).

magnitude response close to the Nyquist frequency (@ = ).
The peak value of this ripple is approximately constant irre-
spective of the filter order (for high filter orders). Also the
phase delay response suffers from similar characteristics:
when the filter order is increased, the peak phase delay error
remains approximately constant.

The magnitude and phase delay responses are illustrated
in Fig. Al (see Appendix A). Only the responses correspond-
ing to the delay values d = 0.0, 0.1, ..., 0.5 are shown; the
magnitude responses are symmetrically equivalent, e.g., that
of d = 0.1 is equal to that of d = 0.9 for even-length filters,
and the corresponding phase delay responses are symmetric
with respect to the curve of d = 0.5.

For comparison, Fig. 5 illustrates the magnitude and phase
responses of a length-4 half-band fractional delay filter de-
signed using Eq. 19 with oo = 0.5. It is seen that the passband
is now very narrow, so that the bandwidth reduction alone
does not provide a good solution for all purposes.

36 IEEE SIGNAL PROCESSING MAGAZINE

(2) Windowing Methods for FIR Filter Design v

The performance of a fractional delay filter obtained by
fruncating the sinc solution is usually not acceptable in prac-
tice. A well-known method to reduce the Gibbs phenomenon
is to use window functions for time-domain weighting. In-
stead of truncating the impulse response, a bell-shaped win-
dow can be used which puts more emphasis on the middle
values of the impulse response and reduces the peak magni-
tude error at the cost of a wider transition band of the filter.
The new windowed impulse response is obtained as

W(n- D)sinc(n—D) for0<n<N
Hm)y= { 0 otherwise (22)
where the ideal impulse response hg(n) is truncated and
shaped by multiplying by w(n-D), which is a length-L (=N +
1) window sequence shifted by the appropriate delay value,
D. Many continuous window functions, e.g., the Hamming
window, can be easily delayed by a fractional value [14, 16,
17]. Note that the obtained impulse response does not directly
minimize any least squared error measure, but it is a modifi-
cation of the least squares solution minimizing E;. Hence, the
windowed version inevitably has larger least squared error
than the original truncated impulse response. -

A comprehensive review of window functions was pre-
sented in [35]. The Kaiser window allows the control of
the peak ripple using one parameter. The Dolph-Cheby-
shev window is optimal in the sense that it has the smallest
possible peak sidelobe ripple, which is given‘as a parame-
ter. It is easy to use since it is included in certain commer-
cial mathematical program packages [69]. Figure A2
shows the responses of the filters in Fig. A1 when 40 dB
Dolph-Chebyshev windows are used, with a clearly lower
ripple but also with a wider transition band. We used
fractionally shifted windows employing the approximate
shifting technique introduced in [56].

In principle, window-based design is fast and easy. How-
ever, in practice it is somewhat difficult to control the mag-
nitude error by adjusting window parameters—this is
particularly true for very short filter lengths (L less than 10),
which are typical in many applications. However, if the
detailed error behavior is not critical, the method is quite
suitable for real-time coefficient update. One can either store
the window in memory and compute the values of the sinc
function on-line or, for example, store enough samples of the
windowed sinc function in the memory and compute the filter
coefficients using interpolation [103, 106].

(3) FIR Filter Design with Smooth Transition Band Func-
tions

The window functions effectively reduce the approximation
bandwidth of the fractional delay filter in order to obtain a
better approximation in the reduced band. This can also be
achieved by modifying the desired magnitude response. It is,
however, essential that the desired response is smooth: the
Gibbs phenomenon is caused by the discontinuity and that is
why reducing the bandwidth as in Eq. 19 does not help.
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Application 3: Fractional Delay
Improves Speech Coding

main processing steps: modeling of the vocal

tract resonator system and modeling of the
acoustic source or excitation. In linear prediction,
new samples are predicted by forming a linear
{weighted) combination of the past p samples.
Since the shape of the vocal tract and, accordingly,
its resonances are varying relatively slowly, the
weights, called predictor coefficients, have to be
determined only every 20-40 ms.

The predictor coefficients and the correspondmg
vocal tract filter are solved based on short term
prediction, where only B-16 past samples are used
to predict the new one. When the filter part is deter-
mined, the source signal is solved by inverse filter-
ing of the speech signal. The output of the inverse
filter (e{n) in Fig. A)is called prediction error, or the
residual. In the case of a voiced speech segment
such as a vowel, the error signal resembles a pulse
train. The time period between the pulses deter-
mines the fundamental frequency of the sound. This
is perceived as the pitch of a voice.

From the coding point of view, it is practical to
estimate one parameter that determines the funda-
mental frequency of the pulsed excitation. A fong

I inear predictive speech codingis basedontwo

_gether, four parameters have to be encoded: the

term predictor (pitch predictor) is used to estimate
the pitch period (e.g., see [89]). Conventionally, the
pitch predictor consists of a delay line, which ap-
proximates the pitch period and, of an additional
three tap FIR filter to improve the prediction. To-

length of the delay line and the three predictor
coefficients.

A typical sampling frequency of a speech coder
is 8 kHz. Considering female speech with a funda-
mental frequency of 2560 Hz and pitch period of 4 ms
(32 samples), an error of one sample will introduce
a random variation of about 3 percent in the funda-
mental frequency estimate, leading to clear rough-
ness in the voice quality. .

A fractional delay pitch predictor has been pro-
posed by Kroon and Atal {50, 511. in this structure,
only two parameters have to be encoded: the length
of the delay line (with integer and fractional parts),
and one predictor coefficient (see Fig. B). The results
show that with male voices, this predictor gives
about the same predictor gain {SNR) as the conven-
tional one, however, now with fewer bits. Addition-
ally, the gain and quality was even improved with
female voices, as one can predict from the example
given above. The application of fractional delay
filters to pitch prediction has also been addressed
in.[68, 70, 78].

4 +
x(n) > eln) -:QE-——» )
Formant Pitch ’
Predictor Predictor |

Fig A. Block diagram of the analysis part of a speech coder
with a formant and pitch predictor in cascade (after [89]).

fy4

fn)

e(n ’
_ B
Delay Line H ED Filter

D

I::ig B. Detailed structure of a fractional delay pitch predictor.

A way to define smooth lowpass responses for linear-
phase FIR design was presented in [84] and [12]. When the
desired frequency response is defined to be a smooth function
instead of the discontinuous rectangle, the impulse response
decays much faster and may be truncated without explicit
windowing. For simple analytic transition functions, like
splines or trigonometric functions, the impulse response can
be solved in closed form. This technique can also be applied
to the fractional delay filter design.

Instead of defining the desired frequency response as in
Eq. 6, we can prescribe a passband [0, w,] with the ideal
response e a stopband [ws, 7] with ideal response 0, and a
Pth-order spline (times ¢’®) in the transition band. This
results in the following impulse response
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p
. sin[%(ms wp)} s1n[ ;D(m +(1)p):|
- n-D n(n—D)
(ws-mp)
2P 2P 23)
for n=0,1,2,...,N.

For a detailed derivation of lowpass filter design, see [84].
Note that the used error norm is the same as in direct LS
design (Eq. 16), but the desired frequency response is differ-
ent.

This approach offers a simple way to control the approxi-
mation band and yet is suitable for on-line coefficient calcu-
lations. A design example is presented in Fig. A3. A
remarkable feature is that the magnitude response remains
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constant with high precision when the fractional delay is
changed, unlike with previous designs. However, this comes
at the cost of a worse phase delay response, which is particu-
larly severe with the 4-tap example (see Fig. A3b).

Other transition functions are not considered here. The
impulse response of a raised-cosine transition function is
easily obtained by modifying the result of [12].

4) General Least Squares FIR Approximation
of a Complex Frequency Response
The smooth-transition-band-method reduces the error of the
fractional delay filter in an advantageous way, but it has some
shortcomings. First, the impulse response is still infinitely
long although it decays fast, and the truncation always causes
some error. Second, the desired response must be defined
explicitly in the whole Nyquist band. While the method has
the clear design advantage that the inverse Fourier transform
can be used to determine the coefficients explicitly, it never-
theless forces approximation resources to be wasted outside
the approximation band where they are actually not needed.
In principle, the delay filter with the smallest LS error in
the defined approximation band is accomplished by defining
the response only in that part of the frequercy band and by
leaving the rest out of the error measure as a “don’t care”
band. This scheme also enables frequency-domain weighting
of the LS error; it results in the following error formulation
(alternative formulations employing eigenfilter techniques
have been introduced in [76] and [85]).

E, W(co)l E(e™®) do

;II»—l

og.,sz o8

4

W(O)H(e'®) - Hyy(e/*) d

:—l]»e

(24)

where the error is defined in the lowpass frequency band [0,
amw] only and W(w) is the nonnegative frequency-domain
weighting function. Note that W(w) has nothing to do with
the time-domain window w(n) (Eq. 22).

We now derive the solution for a general Hi(e™™). To
formulate the solution in compact form, let us introduce
vector notation as

=[1(0) h(1) WM} (252)

e=[1 &/ .. Nl (25b)
for the filter coefficients and for the discrete-time Fourier

transform, respectively, and the matrix

1 cos® cos(Nw)
Ce Re{eeH} _ cos:(a)) 1 cos[]\/: —1]o
cos(Nw) cos[(N-1w] ... 1 (26)

where the superscript ‘H’ stands for the Hermitian operation,
i.e., transposition with conjugation. Now we can express the
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Fourier transform as H(ejco) and the error measure Eq. 24
becomes

[e4:4
Ey ij W(w)h?'e - Hyy (e’ e — H, (/)] do
¥
0
_1

— [W(w)[h"Ch-2h" Re(H;;(e")e"}
‘113

0

+ | Hy(e™)P 1do (27)

where the superscript ‘*’ denotes complex eonjuganon This
can further be put into the following form

E, =bTPh-2hTp, + p, 28)
where
1 (0414
P=— [W(w)Cdo
Ty (29a)
1 on ) . H
= (m)[Re{Hid(ejm)}c—Im{Hid(efw)}s}dm
T x 0 (29b)
1 o )
po == [ W(@) Hyy(e’) deo
To (29¢)
e=[1 cos(®) ... cos(Nw)]¥ (30a)
s=[0 sin(@) ... sin(Nw)1” (30b)

The error measure (Eq. 28) is quadratic with a unique
minimum-ezror solution that is found by setting its derivative
with respect to h to zero. This results in the following normal
equation

2Ph=2p, =0 (31)
which is solved formally by matrix inversion, i.e.,
h=P"p, (32)

Hence, the optimal solution is obtained by determining the
integrals involved in Eqs. 29 (usually numerically) and solv-
ing the set of (N + 1) linear equations (Eq. 32). The arithmetic
complexity (i.e., the required number of multiplications and
additions) of a matrix inversion is in general proportional to
(N + 1)° so that the computational costs are considerably
mncreased over the previous methods, where the coefficients
are obtained in explicit form. Furthermore, numerical prob-
lems may arise, particularly in narrowband approximation
[60, 13]. This is the price to be paid for the increased flexi-
bility of the design.

The numerical problems are indeed regrettable as the
general least squares approximation of a complex response
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Application 4: Tuning to Music

emerging approach to sound synthesis. The

idea is not merely to imitate the sound of a
given instrument but to design a computational
model of its sound producing mechanism to guar-
antee natural sound quality in different playing situ-
ations.

The Karplus-Strong model-[45] was among the
first to show that musical instruments can be mod-
eled and synthesized in real time using DSP tech-
niques. Many fundamental problems were solved
by Jaffe and Smith [39] to make this approach more
practical. They also ‘demonstrated that fractional
delay filters were needed for successful synthesis.

Figure A shows a signal processing model for a
vibrating string. The pitch:of the sound is controlled
by the length of the delay line:in the feedback loop.
It is implemented as a combination of an integer-
length delay line and- a fractional delay filter. In
addition, a lowpass filter {loop filter} is needed to
simulate physical losses in the:string. The input
signal x(n} is a short pulse that approximates the
plucking sound.

Figure B illustrates the limitations of using an

Physical modeling of musical instruments is an

integer-length delay line. The difference between
the desired pitch.values of a string model and the
quantized values due to an integer-length delay line
are shown. It can readily be noticed that the pitch
values available without fractional delays do not
match with any generally used musical scales at
high frequencies. in [39], a first-order all-pass FD
filter {equivalent to the first-order Thiran alipass
filter) was employed for fine-tuning the delay-line
length. Karjalainen and Laine [42] proposed the use
of a third-order Lagrange FD filter. The synthesis of
string instruments using fractional delay filters has
also been discussed in [110], [43], [44], [129], and
[133]. :

Similarly, models of wind instruments can be
built upon variable-length delay lines (see, e.g., [21];
[22], 1120}, [121]) Fractional delay waveguide filters
(FDWF), as defined in [122], [124], [125], and [126],
are flexible extensionsto the fractional delay theory.
They allow for modeling of wave scattering junc-
tions such as finger holes [123] and: conical tube
sections in. wind instruments [127] as well as vari-
able-length sections of the vocal tract in articulatory
speech synthesis [125], [124], [128]. A survey of
FDWF's is given in [126] and [135].

xg(n) > yin)

&
f,——“oop Filter H FD Filter [‘—*)elay Line ]‘—-
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2 o
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Fig. A. A fractional delay filter model for a vibrating string.

Fig: B. (a) Desired vs. actual fundamental frequency of a
string model with integer-length loop delays for a 50 kHz sam-
pling rate; and (b) corresponding approximation errov in Semi-

tones (after [39]).

would be an extremely versatile and easy-to-use FIR design
technique for any application. As discussed in [13] in the
context of linear-phase multiband FIR filter design, the nu-
merical problems (the ill-conditioning of matrix P) are
caused exactly by the advantageous “don’t care” bands where
no response is specified, and these problems can be alleviated
by specifying a response there. In [13], optimized spline
functions were employed to define transition band responses
to reduce the ill-conditioning. However, this may result in a
solution biased from the optimal one if the transition response
is not carefully selected.

When employing the desired function Hi(¢”) = e™ of
Eq. 6, the integrals (Eq. 29) are greatly simplified. Particu-
larly, if we choose W(w) = 1, they can be given in closed form.
The elements of P and p; can be expressed as
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Py = % ICOS[(k —Dwldw® = asinc[ak — )]
0
k,l=],2,...,L (333)
] orn
Pre=— fCOS[(k - D)wldw = asinc[ak — D)]
0
k=12,...,L (33b)

It is, however, worth noting that the P matrix is inde-
pendent of the delay value D and only needs to be inverted
once. Furthermore, the Toeplitz structure of the P matrix
enables the use of the fast Levinson algorithm [36] in its
inversion.
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Obviously, the resulting fractional delay filter depends on
the choice for the frequency band of approximation and on
the weight function. As a simple example, we illustrate here
the design of a fractional delay filter with the approximation
band [0, /2] with unity weight function W(w) =1 in Fig. A4.
Note that this is not equivalent to the case previously where
we prescribed the same passband but could not define a “don’t
care” band. It is seen that the peak magnitude error is greatly
reduced as desired. This is achieved at the cost of a slightly
increased error outside the approximation band.

5) Least Squares FIR Design on a Discrete Frequency Grid
The above methods can be modified for the design on a
discrete (uniformly or nonuniformly spaced) frequency grid.
For example, the inverse discrete-time Fourier transform
(IDTFT) employed in Egs. 11 and 23 can be replaced with
the inverse discrete Fourier transform (IDFT) where the
frequency variable is also discrete-valued. Furthermore, if the
integration in Eq. 29 is carried out using the trapezoidal rule,
it effectively results in the discretization of the frequency
variable. As these versions bring little new to the above
formulations, we omit a detailed treatment here. However,
computations on a discrete frequency grid in general result in
numerically more robust algorithms [64], [34]. In [84] such
methods are discussed in the context of linear-phase FIR filter
design.

6) Stochastic Least-Mean-Squared (LMS) Error
FIR Interpolation
Above, we have explicitly utilized only knowledge of the
desired frequency response in the design of the fractional
delay filter. The character of the signal can only be utilized
in a coarse manner, e.g., by specifying the approximation
band according to the energy distribution of the signal.
However, more knowledge about the signal can be utilized
to achieve small errors. Signals are often stochastic (random)
in nature and characterized by their average power spectrum
or, equivalently, by the autocorrelation function. This sto-
chastic approach was introduced for upsampling interpola-
tion in [79]. For our case, the criterion to be minimized can
be formulated as the minimum expected mean squared output
error, or

Eg = E{ly(n) = yig(mI* } = E{1x(n) * [(n) = hyg (m)]*}

ki
= L[5 (@I HE®) ~ iy (") deo
Ty (34)

where x(n) and y(rn) are the input and the output signals of the
delay filter, E{} denotes the expectation value of the argu-
ment, Hi(¢") = ¢’ is the ideal frequency response, and *
denotes convolution. Sx(w) is the average power spectrum of
the input signal x(rn).

The error Es of Eq. 34 is formally equivalent to the general
complex least squared error E; of Eq. 24 when the weight
function is chosen as

W(®) = S (@) (35)
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Hence, the formal solution is obtained directly by matrix
inversion as in Eq. 32, with the given modifications. Note that
in this case the elements of matrix P are values of the
autocorrelation function of the input signal x(n), i.c.,

kY
Ba= %JSM (®)cos[(k—Hw]do
0

=E{x(mx(n+k+1)}=r,(k—1) (36)

Provided that the input power spectrum Si{®w) can be
estimated beforehand, this scheme is also suitable for real-
time update since the P matrix only needs to be inverted once.

Maximally Flat FIR FD Filter Design:
Lagrange Interpolation

Instead of minimizing a least squared error measure, the error
function can be made maximally flat at a certain frequency,
typically at wo=0, so that the approximation is at its best close
to this frequency. This means that the derivatives of the
frequency-domain error function are set to zero at this point,
that is

d"E(7®)

T =0 forn=0,1,2,...N
[6)

=0, 37
where E(¢) is the complex error function (Eq. 15) with the
desired response Hi(¢'w) = ¢’ as in Eq. 6. Differentiating
and inserting the value wo= 0 in Eq. 37, this setof L=N + 1
linear equations can be expressed in terms of: the impulse
response as

N
Yk hk)y=D" forn=0,1,2,...N

=0 (38)
or, in matrix notation
Vh=V 39)
where h is the coefficient vector (25a) and
11 1 1
01 2 N
v=l0 1 2° N?
01 2V N (40a)
isan L x L Vandermonde matrix [80] and
v=[ p p* .. pMI" (40b)

As discussed by Oetken [80], the solution to Eq. 39, is
equal to the classical Lagrange interpolation formula, where
the coefficients are obtained by fitting the interpolating poly-
nomial to pass through a given set of data values. For the
z-transform, this means that
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Design Guide 1: Simplest FIR FD
Filter—Lagrange Interpolator

way to design an FIR filter to approximate a
given fractional delay D. The coefficients are
obtained from Eq. 42, that is

I agrange interpolation is probably the easiest

N -
h(n) = T]
k=01 —
k#n

]f forn=0,12,...N

where Nis the order of the filter. The coefficients for
the Lagrange FD filters of order N= 1, 2, and 3 (or,

equivalently, lengths L = 2, 3, and 4) are given in the
Table.

The plot of the magnitude and phase delay re-
sponses of the Lagrange interpolators of order N =
1to.5:(L = 2 to 6) in the worst-case approximation
{(half-sample delay) are shown in Fig. 6. It is seen
that these low-order filters give an excellent ap-
proximation: at low frequencies. However, the ap-
proximation bandwidth grows very slowly when the
filter order is increased. Thus, if a 4-tap Lagrange FD
filteris not good enough for a given purpose, it may
be ‘better to use an-LS-based FIR filter design
method instead.

Table: Cocfficients of the Lagrange FD Filters of Order N=1,2, and 3

A(0) ) h(2) W3
N=1 1-D D
N=2 D-1D-2)2 -D(D-2) D(D-1)/2
N=3 (D-1XD-2XD-3)/6  DD-2)D-3)2 DD YD 32 DD - 1Y(D 2)l6
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6. a) Magnitude and b) phase delay responses of Lagrange interpolating filters of length L = 2, 3, 4, 5, and 6 withd = 0.5.

H(z)=z" for D=0,1,2,..N 41)
or that for integer values of the desired delay the approxima-
tion error is set to zero. The solution can be given in an
explicit form as

N Dk

h(n)= HD

for n=0,1,2,...N
ko™ “2)

The case N = | corresponds to linear interpolation be-
tween two samples. In this case the two coefficients are

h(0)=1-D, h(l)=D (43)
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Naturally, here the integer part of D is zero so that D = d.
The amplitude and phase delay responses of low-order La-
grange interpolators are shown in Fig. 6 ford = 0.5 and N =
1,2,..,5(L=2,3, ..., 6; only the fractional part of the phase
delay is shown). It is seen that, due to the coefficient symme-
try for d = 0.5, the even-length filters (L = 2, 4, and 6) are
exactly linear-phase, but the magnitude responses suffer from
the zero at w=. The odd-length filters (L = 3 and 5) have
better magnitude responses, but the phase delays are worse.
This magnitude-phase delay tradeoff between even and odd-
length filters is similar for other fractional delay values and
for other approximation methods as well.

Lagrange interpolation has several advantages: easy ex-
plicit formulas for the coefficients, very good response at low
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frequencies, and a smooth magnitude response. The maxi-
mum of the magnitude response never exceeds unity when
the delay is near to half the filter length. This is important in
applications including feedback. On the other hand, the ap-
proximation error is often unnecessarily small at low frequen-
cies, at the cost of the performance at higher frequencies.
Examples of Lagrange interpolator design with different val-
ues of d are shown in Fig. AS.

Lagrange interpolation has been proposed for the approxi-
mation of a fractional delay independently by Laine [58] and
by Liu and Wei [66, 67]. In the context of multirate filters,
the Lagrange interpolation scheme has been known fora long
time [24, 80, 97]. Ko and Lim [48] derived a general maxi-
mally flat frequency-error solution at an arbitrary frequency
w=wg, which with the choice wo reduces to Lagrange interpo-
lation. The explicit (complex-valued) solution for the case of
nonzero wo was presented by Hermanowicz [37]. The maxi-
mally flat FIR FD design has also been discussed by Sivanand
etal. [101, 102].

In [73], the maximally flat interpolator design was
achieved by truncating the Taylor series of the error function
(15) and by forcing the derivatives in the Taylor series to be
zero at w= wo, In [49] it was shown that the Lagrange solution
Eq. 42 can also be obtained from the ideal sinc solution Eq.
18 using the windowing method. The window coefficients are
computed using the binomial formula.

Also other polynomial interpolation techniques, such as
splines [137], have been suggested for fractional delay ap-
proximation or interpolation. These techniques are nonopti-
mal from the frequency-domain viewpoint. Still, for
applications where good accuracy at high frequencies is not
required, for example the parabolic interpolation technique
[27] may be attractive since it can be implemented efficiently
with a third-order FIR filter.

One can also construct a mixed approximation method by
adding flatness constraints for a certain number of derivatives
at in the general least squares approximation problem, em-
ploying the Lagrange multiplier method for the constraints as
in [54] and [107]. An interesting technique for Taylor series
approximation of the sinc function was proposed in [109].

Minimax Design of FIR Fractional Delay Filters

Both the least squares and the maximally flat approximation
techniques have the drawback that the peak error value in a
defined approximation band cannot be controlled explicitly.
For example, we may want to design a delay filter whose error
characteristics fit in a certain tolerance scheme, i.e., it is
desired to keep the peak approximation error in given limits.
These kinds of specifications can be met using the minimax
(Chebyshev) solution which, by definition, minimizes the
maximum value of the error magnitude in the range of ap-
proximation, or

Einer = min Ico;m[()a,lén]{‘E(ejm )’}} 44)
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When certain conditions are met, the minimax solution is
unique and equal to the equiripple solution, characterized by
an oscillating error curve which attains the maxima at a
certain number r of frequency points in the approximation
interval, i.e.,

joo| _ _
IE(e )|—Emax, w=0g, k=12,...,r (45)

This is the case, for example, in the linear-phase approxi-
mation for FIR filters with symmetric or antisymmetric im-
pulse response where the error function reduces to a
real-valued cosine series (with a possible weight function).
The equiripple solution can be found by the iterative Remez
exchange algorithm, as proposed by Parks and McClellan
[83]. Unfortunately, Chebyshev approximation problems can
usually be solved only by using iterative techniques.

However, the fractional delay approximation is more trou-
blesome than the case of linear-phase FIR filters since the
approximating function is complex-valued in general. Ad-
vanced algorithms for complex approximation with minimax
error characteristics have been presented in [4], [84], [87],
[98], and [41] and they can also be applied to the problem at
hand. However, as the design procedures involve iterative
algorithms, they are not suited for applications requiring
real-time coefficient update.

A simplifying formulation for the minimax complex de-
sign in terms of real functions was proposed in [88]. The
complex task was split into two real-valued design problems
which facilitates the use of the efficient Remez algorithm by
a modification to the Parks-McClellan program [83]. A new
algorithm capable of full complex approximation was pro-
posed in [41]. However, these algorithms are not much better
for real-time coefficient update since the Remez routine must
be employed for each delay value.

An approach that comes closer to real-time requirements
was proposed by Oetken [80]. Considering the design of
even-length interpolation FIR filters for sampling rate in-
crease using a polyphase structure, the amplitude errors of the
polyphase branches, when made equiripple, are almost ex-
actly proportional to each other. In particular, the zeros of the
magnitude error function remain the same with high preci-
sion. When the coefficients of one branch are given, those of
any other branch can be solved via a set of linear equations.
As one of the branches corresponds to an exactly linear-phase
filter with a symmetric impulse response, it can be designed
off-line using the standard Remez algorithm.

Realizing that each polyphase branch actually approxi-
mates a rational fraction of the unit delay, the method can be
directly applied to our problem. Let us assume that the coef-
ficients of an Nth-order (or length L = (N + 1), L even)
symmetric FIR filter are given, the amplitude response of
which approximates unity in the equiripple sense in the
passband [0, arr], O<a=<s1. The error function is known to
have K = L/2 zeros in the passband, i.e.,

E(e'®)= H(e™®) - Hyy(e"") =0, 0=Q), k=12,. K (46)
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implying that

%h(n)e_jnnk =N =12, K
n=0 47)
where N/2 is the delay of the filter. Assuming that the zeros
remain the same for noninteger values of D as well, the filter
coefficients can be solved from Eq. 47 for a chosen total delay
D, which is close to N/2. This can be expressed in matrix form
as

Egh=ep (48)
where
S eyl e
1 e‘jﬂz e“jZQz R e_jNQ2
Eg=|, .
T T s NS o 49)
isa Kx (N + 1) matrix and
-iDQ —jDQ —jDQ
ep=[e D DY IO T (49b)

Equation 48 is a set of K complex equations with L = 2K
unknowns, which can be expressed as a fully determined set
of L real equations by equating the real and imaginary parts
of both sides as

Poh=pg (50a)
with
Ca
Fo = [Sg_ (50b)
and
¢p]
Pa= [Sm (50¢)

where the matrices and vectors contain appropriate cosine
and sine elements such that Eq = Cq -jSq, and e p= ¢ p-jsp.
Note that the design scheme can be interpreted as a complex
version of the frequency sampling technique [84] where the
frequency samples are unequally spaced.

Hence, one first has to design the linear-phase prototype
filter, to find its zero frequencies () and then to invert the
cosine-sine matrix of Eq. 50b. Since the zeroes of the phase
error function need not be known with high precision, simple
noniterative search on the employed frequency grid is suffi-
cient in general. After that, the coefficients of a new filter
approximating any given delay are readily obtained via a
single matrix multiplication. Note that matrix Eq. 50b is
independent of the delay D and only needs to be inverted once
off-line so that the approach is suitable for real-time coeffi-
cient update.
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Oetken also observed that the amplitude ripple is not the
same for all the polyphase branches (in our case: for all
fractions of the delay). Instead, it depends on the fractional
part d in the following manner [80]:

8, = 8y, sin(dm) (51)
where 3, is the maximum amplitude ripple of the linear-
phase prototype filter with the delay D = N/2 (= Int(D) + 1/2)
and 8, is the ripple of a filter approximating the (noninteger)
delay D with the fractional part, d. Note that the amplitude
ripple is largest in the linear-phase case (D = N/2 or d = 0.5)
and reduces to zero when the fraction approaches an integer
value (d = 0 or d = 1), which corresponds to the case that the
impulse response reduces to a unit pulse. The almost-equirip-
ple approximation computed using the Oetken method is
illustrated in Fig. A6. The 4-tap FIR filter does not have many
ripples, but the 10-tap filter responses are seen to be very
close to equiripple.

Relation to Interpolation/Decimation FIR Filters

As already discussed above, the polyphase structure of deci-
mation/interpolation filters can be utilized for fractional de-
lay implementation with fixed steps ([5, 9, 23, 24, 74]). For
example, in order to break the unit delay into Q steps, one can
design a Qth-band lowpass filter with the normalized pass-
band width of Q and form the Q-branch polyphase structure
by picking up every QOth sample to one branch. It can be
shown that each band approximates a fractional delay of the
value
O-k

D==——,k=0,1,2,.,0-1
0 e (52)

The accuracy of approximation depends naturally on the
length of the prototype Qth-band lowpass filter. In order to
achieve comparable frequency response for each branch, the
length of the prototype filter should be a multiple of Q. The
lowpass filter should be linear-phase, but it can be designed
with any method. However, the optimality of the prototype
filter is not shared with the branch filters; e.g., equiripple
magnitude characteristic will be lost.

The multirate approach is straightforward and well suited
for table look-up applications. If one is satisfied for example,
with Q = 50-step division of the unit delay, one simply
designs a length-50L filter and uses the desired length-L filter
of the set.

However, small delay steps and strict specifications for the
approximation error may result in an FIR filter with hundreds
of taps, which makes it impossible to use the Parks-McClellan
algorithm for the prototype design. In that case, windowing
methods may be used for which there is practically no limit
for the filter order. However, as there are several other simple
methods that provide smaller error, the multirate approach
now appears somewhat outdated for this application.

For reference, we chose Q = 10 to design prototype filters
of lengths 40 and 100 to provide a set of length-4 and
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length-10 FIR filters for 10-step increments of the fractional
delay. The results are shown in Fig. A7. The startling feature
is that the magnitude approximation error is large for the case
that the delay is zero. The reason is that the impulse response
does not have a single nonzero value as it would have in the
ideal case. This can be alleviated by using the “TRICK”,
which forces exact zeroes in the impulse response [117].
However, rather than for approximation, the multirate
approach can be used for implementation of high-quality
wideband FD filters, as proposed in [75]. Using a polyphase
implementation with two branches the accuracy of approxi-
mation can be increased without excessive total delay.

Controlling the Delay of Arbitrary FIR Filters

Above, we have assumed that the fractional delay filter is
designed exclusively for producing the desired delay. How-
ever, in time-critical applications this may be impossible
since an additional FIR filter always introduces some net
delay, as discussed earlier. Instead, it may be more advanta-
geous to control the delay of an FIR filter that is already
included in the system. As the FIR filter may be adaptive or
variable or for other reasons its coefficients may not be
known, it is sometimes essential that the delay control algo-
rithm be independent from the filter coefficients.

1) Fourier Transform Based Methods

We first present a Fourier transform based delay control
algorithm which is related to ideal bandlimited interpolation
discussed in [81]. Let us assume an Nth-order (length L =N
+ 1) prototype filter whose frequency response is

N
H (/)= Y h, (k)e @
i Eo ? (53)

If the filter is linear-phase, it has constant group delay N/2.
Assume that it is desired to change the delay by a fraction
from this nominal value. This is equal to multiplying the
frequency response by e or

. . N . N .
H(e/w) - e—]AdC\) th (k)e——]k(l) - Ehp(k)e—}(k+Ad)m
k=0 k=0 54

This is thus the desired frequency response. Taking the
symmetric inverse discrete-time Fourier transform (Eq. 11)
of Eq. 54, we obtain the real-coefficient FIR filter as

¥
h(n):i [ H(e™)e™ de
2 =
N 1. .
= Y by [T HAD0 g0
k=0 “r

N
2. hy, (k)sine(n — k — Ad)

=) (55)

which is seen to be a weighted sum of sinc functions (Eq. 13)
with an infinitely long impulse response and consequently
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with truncation problems. This can be alleviated in the usual
manner by employing a suitable time-domain window to
truncate A(n). When the lengths of A(n) and A,(n) are chosen
to be the same L, the solution (Eq. 55) can be given in explicit
matrix form as

h=Wy;S\sh, (56)
where h and h, are the new and the prototype FIR coefficient
vectors, respectively, and the elements of the L x L square
matrix Sad are

Spa gy =sinc(k—1-Ad) k,1=12,..L (572)
and Wad is a diagonal matrix with the value of the length-L
window function as its elements, or

Wadir =wWaak) k=12,...L (57b)

Note that the length of the new h vector can also be chosen
longer or shorter than L by simply adding rows toor canceling
them from the Sad matrix. Furthermore, if a fixed step Ad is
sufficient, one can compute Sad and multiply it by the Wad
matrix in advance, which considerably reduces the computa-
tions.

A similar delay control method employing two discrete
Fourier transforms (DFT) was presented by Adams in [2]. It
is in fact closely related since, by adapting to our notation,
the two complex DFT's can be packed into a single real-coef-
ficient matrix S§%,0f the form (Eq. 57a) with the elements

sin[rt(k — [ — Ad)]
Lsin[n(k—I—-Ad)/ L]

Shapr= ki=12,..L

(58)

The Adams method is thus seen to be a discrete-frequency
counterpart of the first method, as the essential difference is
that the sinc function is replaced by the periodic sampling
function, also known as the Dirichlet kernel [11]. The differ-
ence in performance of Eq. 57a as compared to Eq. 58 is thus
expected to be small for large L. However, both formulas are
clearly more advantageous for practical use than the two
explicit complex DFTs as proposed in [2] (even if the FFT
algorithm is employed), since here only real-valued multipli-
cations are needed. Furthermore, the matrix (Eq. 58)—as well
as Eq. 57a—has a symmetric Toeplitz structure, which means
that only L different coefficients are required.

For illustration, we approximate the equiripple filters of
Fig. A6 using this method. The prototype filter was chosen in
the middle (d = 0.2) and shifted Dolph-Chebyshev windows
with 40 dB ripple were used. From the resulting Fig. A8 it is
observed that the magnitude and phase delay responses are
poorly preserved for the 4-tap filter but fairly good for the
10-tap filter.

2) Matrix Transform Method Based

on Zeros of the Error Function

It is natural to assume that the zeros of the error function
remain the same not only independently of the approximation
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method but also irrespective of the amplitude curve approxi-
mated. This suggests that the Oetken method can be used to
control the delay of any FIR filter. This is, however, only
possible when the zeros of the error function are known
beforehand so that the transformation matrix (which only
depends on the zeros) can be computed.

3) Farrow Structure for Fractional Delay FIR Filters

A promising technique for efficient implementation of a
continuously variable delay element was proposed by Farrow
[29]. This method assumes that the filter is designed off-line,
but the real-time control of the delay value is simple and
efficient. The basic idea is to design a set of filters approxi-
mating a fractional delay in the desired range (e.g., 0< d<
1) and then to approximate each coefficient as a Pth-order
polynomial of d, or

2
hy(m)= Y cpy(md™ n=0,12,..N

m=0 (59)
where c,(n) are real-valued approximating coefficients. The
subscript d is now included to emphasize that each coefficient
is a function of the fractional delay, d. The transfer function
of the filter can be elaborated into the form

N

N P
Hy()= Shyme ™" = Ei Zc,n(n)d'"}‘_"

n=0 n=0Lm=0

P
m_ Zcm(l)dm

m=0

P N
=Y [ZCm(n)z_n
m=0| n=0

(60)

where it was defined

N
Cu(2) = Yepm(mz™

n=0 (61)

The form (Eq. 60) immediately suggests an efficient im-
plementation as a parallel connection of fixed filters with
output taps weighted by an appropriate power of 4 (Fig. 7).

The sample implementation presented in [29] was de-
signed by employing least squared error criterion over the
desired frequency band and the employed range of d. Also
the polynomial approximation of the filter coefficients was
done in the least squares sense. An excellent tutorial presen-
tation of the method with examples and performance analysis
is included in [72], when applied to timing adjustment algo-
rithms in digital receivers.

The polynomial approach can readily be generalized for
other filter design techniques as well. In addition to the least
squares method, maximally flat or equiripple approximation
can be employed to design the set of prototype filters cover-
ing the desired range of d. The coefficients of the filter set are
then approximated separately by the polynomial structure of
a desired order. Polynomial interpolation techniques, such as
Lagrange interpolation, can be realized using the Farrow
structure without further approximation [27], [126], [130],
[135].

The design of the generalized polynomial structure for
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7. The Farrow structure for implementation of polynomial ap-
proximation of filter coefficients.

delay control can be formulated as follows:

1) Design a set of Q + 1 FIR filters of the (same) chosen
order N approximating in a desired sense the ideal noninteger
delay whose fractional part takes values in the desired range
[dmin, dmax]. The values of d can be chosen, for example, on a
uniform grid as

d —d. .
max min_ o —0,1,...0
o 1 (62)

d 1 =4q

The result is the set of prototype filters with the coeffi-
cients hg4(n) forg=0,1,2,..,Qandn=0,1,2, .., N.

2) Design the polynomial structure approximating the
coefficients of the prototype filters in the desired sense so that

P
hgq (m)= ZC mdl, ¢=0,12,....0; n=0,1,2,....N
o (63)

Note that the design reduces to L =N + 1 separate optimi-
zation problems: each polynomial approximation is carried
out for a fixed value of n. It is easiest to use least squares curve
fitting for this task. According to our experience, second-or-
der polynomials with three coefficients are usually sufficient.
The resulting coefficients c.(n) are then employed to form
the transfer functions C,(z) of the subsections, as shown in
Fig. 7.

We applied the design method to imitate the response of
4-tap equiripple approximations of Fig. A6. Second-order
polynomials (P = 2) were used for coefficient approximation.
The results are shown in Figs. 8a and 8b, which show that
both the amplitude and phase delay characteristics are accu-
rately reproduced, with hardly any observable deviation from
the original ones (Figs. A6a and b). Similar results were
obtained for 10-tap filters. Farrow approximation with sec-
ond-order polynomial approximation for coefficients thus
provides an accurate means for practical implementation of
FIR FD filters.

The polynomial approximation technique can also be ap-
plied to allpass filters, as will be discussed shortly.

Summary of FIR Filter Design and implementation

To conclude our discussion of FIR FD filters, we present a
summary of these techniques and evaluate their design com-
plexity. As stated previously, our main interest is in fast
on-line tuning of the fractional delay and thus the fast update
of the coefficients is of paramount importance.
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8. The Farrow polynomial approximation of the equiripple FIR
design of A6. Polynomial order P = 2 and filter length L = 4. a)
magnitude and b) phase delay response.

The above discussed FIR design methods are collected in
the Table above, with information about the filter parameters
and design complexity. The Lagrange interpolation is one of
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Table: Design Methods for FIR Fractional Delay Filters
Method Parameters Design Comments
A. LS-Based FIR Design
0) Ideal Sinc ND Closed-form For theoretical use only
1) LS FIR (Truncated Sinc) ND Closed-form Gibbs phenomenon
2) Windowed Sinc N D window Closed-form
3) Smooth Transition Functions | N D transition func Closed-form
4) Complex LS Design ND Matrix Eq.
5) Discrete Complex LS Design | N D grid Matrix Eq. ;
6) Stochastic LS Design N D signal spectrum Matrix Eq. Utilizes the power spectrum of the signal
B. Maximally Flat Design
Lagrange Interpolation ND Closed-form Simple design: try this first
C. Equiripple Design
Oetken Method N D prototype FIR filter | Matrix Eq.
D. Multirate Method
Polyphase Design N D FIR Filter High-order FIR design
E. FIR Delay Control
1) Fourier-Transform Method N D prototype FIR filter | Matrix Mult.
2) General Oetken Method N D FIR filter + zeros Matrix Eq.
3) Farrow Structure N D P set of FIR filters | Polynomial approximation | easy and accurate delay control
= the most attractive methods, since only a small number of
multiplications and additions is needed for coefficient update
1 [52]. Filters of the order 1, 2, and 3 are fast to compute and
accurate enough for many applications [42, 120, 121, 125].
0.8y Often, the coefficients must be updated only for every 5th to
w 50th signal sample so that relatively many operations may be
§ o8y spent for each update.
€ oul The Farrow polynomial approximation of filter coeffi-
=" cients [29] also offers means for fast coefficient update. Since
ool any approximation technique can be used for the prototype
405 design, polynomial approximation is a highly flexible tool
0 I and suitable also for nonstandard applications, where, for
0 01 02 03 04 05 06 07 08 09 1 example, an irregular magnitude response is to be maintained.
NORMALIZED FREQUENCY . . . L
@ In more complicated filter formulations and design algo-
rithms, real-time coefficient update may be too expensive
16 T J unless table lookup techniques are utilized [103, 106]. This
154=05 J strategy is very efficient when the table is precompiled so that
proper filter coefficients can be retrieved by table lookup for
o a finite set of fractional delay values or additional interpola-
% tion between stored table values.
o .
% Fractional Delay Approximation Using
Allpass Filters
In general, a recursive (IIR) digital filter can meet the same
09 L . frequency-domain specifications with a smaller number of
0 01 02 03 04 05 06 07 08 08 1 multiplications than an FIR filter. Unfortunately, the design
NORMAL'ZEEJ)FHEQUENCY of TIR filters with prescribed magnitude and phase (or group

delay, or phase delay) response is far more complicated than
that of corresponding FIR filters. The design of FIR filters is
greatly eased by the fact that the filter coefficients are equal
to the samples of the filter impulse response so that (in
full-band approximation) the frequency-domain specifica-
tions can be turned into the “coefficient domain” by the
inverse discrete-time Fourier transform. This is not possible
for recursive filters.
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Another major disadvantage is the possible instability of
recursive filters. In general, the obtained solution has to be
checked so that all the poles of the filter remain within the
unit circle in the z-domain, which makes real-time coefficient
update difficult.

Here we omit the problem of magnitude approximation by
considering only the design of allpass filters, a special sub-
class of recursive filters. (For a report on fractional delay IIR
filter design, see [113].) Allpass filters have unity magnitude
response in the whole frequency band by definition, which
means that one can concentrate on the approximation of the
desired phase (or group delay, or phase delay) characteristics.
This reduces the available degrees of freedom but also makes
the design task much easier.

The z transfer function of an Nth-order allpass filter is of
the form

Vo
D(z)

_a,+ a,,#lz_1+...+alz
1+ alz_1+...+aN,1z_(N_D +a,z

A(2)=

—(N-1) + Z—N

N

(64)

where the numerator polynomial is a mirrored version of the
(supposedly stable) denominator D(z). The coefficients are
assumed to be real-valued. The direct form I implementation
of the allpass filter is shown in Fig. 9. The phase response of
the allpass filter can be expressed as

0 () =arg{A(e’® )} =-No+20p(@)

(65)
where
N
| Y a; sin(ko)
Op(w)= arg{——.—} = arctan k;o
D(e’™) Y a; cos(kw)
k=0
)
= arctan 5
ac (66)

where ¢ and s are appropriate cosine and sine vectors as
defined in Eq. 30, and a is the coefficient vector

a=[ay a; a ... ayl¥ (67)

with ao = 1. The group delay of the allpass filter is related to
that of the denominator similarly to Eq. 65, or

dO 4(m)
do

rg’A((o)=— :N—Ztg,D(m)

(68)
where the delay of the denominator can be expressed as

dOp(®) _a'GAa

> y(n)

x(n) { i

>

27 2
a, “Ay.q

v A v

z’ z"

9. Direct form I implementation of an Nth-order allpass filter.

where
G=cc +ss” (69b)
A =diag[0 1 ... N] (69¢)
Naturally, for the phase delay it holds
O4(w)
T W)=———==N-27 Q]
p.A(®) © p.0{®) 70)

Unfortunately, the phase, phase delay, and group delay are
all related to the filter coefficients in a very nonlinear manner,
as the above equations show. This means that one cannot
expect as simple design formulas for the allpass filter coeffi-
cients as for FIR filters. Instead, one can almost exclusively
find only iterative optimization techniques for minimization
of traditional error criteria.

In the following discussion, we shall review in greater
detail only the simplest allpass design techniques that have
some potential for applications requiring real-time coeffi-
cient update. Among the above delay measures, the phase is
perhaps the most suitable for least squared error design.
Consequently, much of the following is based on the recent
results on least squares phase approximation presented in [60,
63, 53, 77]. These schemes are easy to program and can also

Tgp(@)=— 1o 27Ga (69a) be modified for approximately equiripple phase error solu-
tions, as well as for corresponding phase delay approxima-
tions, in contrast to many other methods that may be more
difficult to use.
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Least Squares Design of Allpass Filters

1) Approximate LS Phase Error Design
Using the above notation, the phase error (deviation from a
prescribed desired phase ®4(w)) can be expressed as

T
a SB
AB(®) =04 () - O A(co)=23rctan{ - }
a

p (71)
where
sp =[sin{B(®)} sin{B(w)~®)} ... sin{B(w)— N}l
=lcos{B(@)) cos{B(@) =)} ... cos{B@)~Nw)l” (79 73
and
B(@) =5 104(@)+ No] -

When approximating a noninteger delay D = N + d, or
Ou(w)=—-Dw=-(N + d)o, the last expression reduces to

cod
B(OJ) = (75)

The term Nw is canceled out, since the average delay of the
system is exactly N samples. In [60, 63, 53, 77], several
techniques were developed to minimize the weighted least
squared phase error, i.e., the measure

E= iajn W()IAS(W) do
o (76)

where W(w) is a nonnegative weight function. By using linear
approximation for the arcus tangent function arctan(x) = x in
the expression for the phase error (Eq. 71), a modified error
measure can be expressed as

e 2 12
[ asBd@ ~JW()a 333 do
Ty Bl a chBa
4‘“ alSg(m)a
(e
Ty C(w)a )

where we define new matrices as Sg(w)= SBSBT and C{w) =
CBCQT‘ If the coefficient vector a in the denominator were
known and fixed, this error measure would be a quadratic
form expressible as

(78)

where ag is the fixed coefficient vector and the matrix P is
defined in an obvious manner. When the matrix P is positive
definite, there exists a unique solution for the vector a which
minimizes the error measure (Eq. 78). The solution can be
found, e.g., by the eigenfilter technique [116] which is
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equivalent to iteratively solving a set of N linear equations
(Appendix C). :

The easiest way to eliminate the denominator is to neglect
it, which effectively introduces coefficient-dependent
weighting in the error measure and thus causes a bias from
the true least squared error solution. In this case the matrix P
is solved as

4 0417
=— [W(®)Sg(@)do
%o (79)

Due to the simple form of B(w), the integrals can be solved
in closed form, e.g., if W(w) is chosen piecewise constant.
When it is set to W(w) = 1 in the approximation band w&[0,
a], the elements of the P matrix are obtained as

[0.419
Py :% [{coslk ~ Dol cos[(N —(k+1+d)o]}dw
0
=4afsincfok — )] —sinc[o(N — (kK + 1+ d))]}
ki=12,.,L (80)
The matrix is seen to have a Toeplitz-plus-Hankel structure.
This approximation scheme offers an efficient way to solve
for the allpass coefficients, only requiring solution of the set
of N equations. Using fast algorithms like the one proposed
in [71], this matrix can be inverted in order of N” arithmetic
operations instead of N° complexity required for inversion of
a general matrix.

The bias from the least squares solution can be removed
by employing an iterative algorithm such that the old coeffi-
cients are used in the denominator for weighting, as originally
proposed in [60] and [63]. With this scheme, the matrix at the
qth iteration is

[3((0)

4“
(@) _
P = - J W(w) (q 1)TC (m)a(q D dw

(81)

For details, see [63] or [77]. As demonstrated in these
references, the algorithm typically converges to the desired
solution although it cannot be guaranteed.

Let us demonstrate both methods by approximating frac-
tional delay with second and fifth-order allpass filters. The
phase delay curves obtained using the noniterative method
(Eq. 79) are shown in Figs. Bla and b, respectively. Note that
we show the phase delay responses for the entire range -0.5
=d <0.5 since, unlike FIR filters, no symmetry relations hold
for allpass filters. The phase delay approximation appears to be
worse at low frequencies. This is because the filter is designed
by minimizing the phase error but the phase delay (phase divided
by frequency) naturally yields large values when the frequency
is small. Furthermore, it was observed that the iterative method
(Eq. 81) produces essentially equivalent results so that, in con-
trast to phase equalizers [77], in FD filter design the noniterative
method should be preferred in practice.

2) LS Phase Delay Error Design of Allpass Filters
Since the phase delay is defined as the negative phase divided
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by angular frequency (Eq. 10), the LS phase delay error can
be expressed in terms of the phase error as follows

) A8(w)[*
j W() AT, (@) do = j W(w )‘ ‘ d
0 (O]
o

[ D)) porw)? doo
0. w’ (82)

Hence, the above phase error solutions can be modified for
LS phase delay design by simply introducing an additional
weighting function W (w) = 1/w”. For example, in this case
the P matrix of Eq. 80 becomes

on
J. —lz—{cos[(k D] - cos[(N —(k + [+ d))m]}dw
0

Py =
[(3)
1,

"’"‘?—Il-lk

JA=12,..,L (83)
whose elements can be determined either numerically or by

employing the relation

J cos(ax) cos(ax)
2

=—aSi(ax)— (84)

where the sine integral Si(x) has a fast converging series
expansion [1]:

( l)n x2n+1

sin¢ -
Si(x)= f —dr= z “Q2n+1)2n+1)!

(85)

The iterative approach is treated similarly. However, as
with phase approximation, also here the iterative solution
produced practically the same results, and thus there is no
need for the additional complication in FD filter design. The
phase delay curves obtained using the noniterative phase
delay approximation technique are shown in Fig. B2. Com-
parison to phase approximation (Fig. B1) demonstrates that
the phase delay approximation (Fig. B2) is more appropriate
when the design is judged by the phase delay curves.

Maximally Flat Group Delay Design
of Alipass Filters

In 1971, Thiran proposed an analytic solution for an all-pole
lowpass filter with a maximally flat group delay response at
the zero frequency [114]. Since the group delay of an allpass
filter is twice that of the corresponding all-pole filter, the
all-pole formulas of Thiran can be used for allpass design by
using half of the delay value. (In fact, the Thiran formulas
appear to be much more useful for allpass design, since there
is no way to control the amplitude response of the all-pole
lowpass filter.) The solution for the allpass filter coefficients
approximating the delay D =N +d is

0 01

02 03 04 05 06 07 08 09 1
NORMALIZED FREQUENCY

10. Phase delay curves of 1, 2, 3, 5, 10, and 20th-order allpass fil-

ters approximating fractional delay d = 0.3 (maximally flat group

delay approximation; only fractional part of the delay shown).

N !
where - N is a binomial coefficient. It always
k) kKUN-K)!

holds that ao = 1 so that the polynomial is automatically
scaled as desired.

Figure 10 shows the phase delay curves of 1, 2, 3, 5, 10,
and 20th-order allpass filters approximating the fractional
delay value d = 0.3. Note that the integer parts of the delays
are different. The corresponding phase delay responses for
filter orders N = 2 and N = 5 are presented in Fig. B3. It is
seen that, even with such low-order filters, the delay response
is excellent over a large part of the frequency band.

In the original paper [114] it was shown that for large
enough positive D the resulting allpass filter is guaranteed to
be stable, which is a great advantage. As this is the only
solution known to us where the coefficients of the allpass
filter are obtained in closed form, it seems to be the best
choice for many practical applications.

Minimax or Equiripple Design of Allpass Filters

There exist numerous algorithms that can be used for mini-
max or equiripple phase, group delay, or phase delay approxi-
mation, e.g., [26, 28, 94, 40, 100, 38, 59, 53]. All these
algorithms are iterative and some of them require a good
initial solution to converge. Instead of reviewing all the
algorithms in detail, we introduce a straightforward approach
for equiripple phase approximation which can be imple-
mented and used without too much expertise in the approxi-
mation theory. For a comprehensive monograph on phase
approximation with allpass filters, see [62].

1) Equiripple Phase Error Design

In [65], an approach for iterative weighting was proposed for
approximately equiripple amplitude design of linear-phase
FIR filters. In [53] and [77], this technique was applied to
least squares phase approximation with allpass filters. The
basic idea is to use a weighting function in Eq. 81 that always
reduces the maxima of the error curve. This kind of weighting
can be constructed by taking an envelope (i.e., a curve con-
necting local maxima) of the phase error function itself. By
raising this envelope curve to a pth power, the following
weighting function results:

NN -
a =(—1)"( ]H—D—Nﬂ— for k=0,1,2...,N
k)oD-N+k+n (86) W(w) =[env 140D (@)1} 87
where env() is the envelope function. As seen from Egs. 76
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Design Guide 2: Simplest Allpass FD
Filter—Thiran Approximation
I sive counterpart of Lagrange interpolation. It
is the simplest way to design an allpass filter
approximating a given fractional delay D. It is char-
acterized by maximally flat group delay at the zero

frequency [80]. The coefficients are obtained in
closed form from Eq. (86), or

el

he Thiran method can be viewed as a recur-

D-N+n
I

e fOr k= 0,122,500, N
w0 D—N+k+n

where N is the order of the allpass filter. The de-
nominator coefficients of low-order allpass transfer

functions (N = 1, 2, and 3) are given in the Table.

The plots of the phase delay responses of Thiran
allpass filters of order N=1,2,3,5,10,and 20 inthe
worst-case approximation: (half-sample delay) are
presented in Fig. 10-—remember that the magnitude
response of an allpass filter is always-exactly unity
in the whole frequency band, by definition. It is seen
that these low-order filters give an excellent phase
delay approximation at low freguencies. However,
the approximation bandwidth grows very slowly
when the filter order is increased. If a low-order
Thiran allpass filter (e.g., the third-order one) is not
good enough for the application, it may be better to
use an LS-based allpass filter design method in-
stead.

Table : Coefficients of the Thiran FD Allpass Filters of Order N = 1,2, and 3.
ay dz 43
N=1 (1- D)1+ D)
N=2 2UD-DHD + 1) {D-DD-DND+DH(D+2)
N=3 3D -DD+1) 3D -2XD - DD+ YD+ 2) AD WD = 20D - DD +1)D + 2D +3)

and 87, this solution yields an approximately L;.>-norm solu-
tion, since the weighting function effectively increments the
power of A®(w) by p from the original L,-solution. When a
high enough p is chosen (e.g., p = 50), the error curve is very
close to equiripple. As discussed in [53] and [77], it is
advantageous to increase p in steps larger than one to guar-
antee fast convergence.

2) Equiripple Phase Delay Error Design
As with least squared error design, the equiripple phase error
algorithm can be modified for phase delay design by using
the envelope of the phase delay error for weighting in Eq. 82.
This results in the following overall weight function at the gth
iteration:

]p

Figure B4 provides examples of the equiripple phase delay
design using the iterative algorithm, showing that the result-
ing error behavior is very close to equiripple. The design
algorithm required ca. 15-30 iteration steps, depending on the
fractional delay value d.

20" (w)

W(w) = —]—2—|:env
(V] ®

(88)

Controlling the Delay of Allpass Filters

Unlike FIR filters, where the control of the delay of an
unknown filter is possible, the corresponding devices for
allpass filters assume knowledge about a prototype allpass
filter. The methods are in general more complicated than
those for FIR filters, but nevertheless simpler than the itera-
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tive design methods.

1) Matrix Transform Method Based on

Zeros of the Error Function

The phase delay curves of Fig. B4b indicate that the zeros of
the phase error function remain approximately the same when
the fractional delay is changed from -0.5 to 0.5. This suggests
an update algorithm similar to that proposed by Oetken [80]
where the new coefficients are obtained from the prototype
filter via a transformation matrix. Assume that the zeros of
the phase error curve in the approximation band w&[0, o]
(also bandpass approximation is possible) are {4, k=1,2, ...,
N. Setting the phase response Eq. 65 of the filter to approxi-
mate desired values at these points results in an interpolation
which has a unique solution for an Nth-order allpass filter (for

details, see [63]). Interpolating the phase response -Dw =
-(N + D)w yields the set of equations
N
Za, sin[(d +D)Q; 1=—sin(Q;d) k=12,...,.N
I=1 (89)
which can be given in matrix form as
Sdal =-S, (90)
where
Sgxy =sinl(d+DQ] k=12, N ©91a)
Sqxg =Sin(d) k=12,..,N 91b)
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11. The phase delay response of the Farrow polynomial approxi-
mation of the LS phase delay design of Fig. B2. Polynomial order
P =2, filter order N = 2, and wp = 0.57.

and a, equals a of Eq. 67, where the first element, ao, has
been canceled. Hence, the coefficients of the allpass filter
approximating any delay value d can be solved from Eq. 90,
via matrix inversion when the zeros of the phase error are
known. Unlike the Oetken method, the coefficients of the
prototype filter are not required explicitly, since all the nec-
essary information is included in the zeros of the error curve
and in the delay value (provided, of course, that the filter
order remains the same).

Unfortunately, the matrix S, depends on d, so that the
inverse matrix cannot be computed beforehand in general as
with Oetken’s method. Instead, the matrix has to be inverted
for each delay value, which is fortunately easier than applying
an iterative algorithm every time. In principle, any approxi-
mation technique and error measure— phase, group delay, or
phase delay error—can be used to determine the prototype
filter. For example, it is also possible to design an allpass
phase equalizer for an IIR filter and fine-tune its net delay by
the proposed method.

2) Recursive Farrow Structure for Allpass Filters
Analogous to the FIR case discussed previously, each coef-
ficient of an allpass filter approximating a fractional delay in

the range varies continuously and can be approximated by a
polynomial in d. Figure 11 shows the phase delay curves of
the polynomial coefficient approximations imitating the least
squares phase delay designs of Fig. B3a. Second-order poly-
nomials were used which resulted in practically identical
designs. This observation holds for higher-order filters as
well. The filter can be implemented efficiently using a recur-
sive version of the Farrow structure that was described pre-
viously for FIR filters.

Summary of Allpass Filter Design and
Implementation

Although there are far less different approaches for allpass
than FIR filter design, the basic conclusions are much the
same. A summary of the allpass filter design techniques is
collected in the Table below. The maximally flat group delay
(Thiran) design corresponds to the Lagrange interpolation: it
is a closed-form design with an excellent accuracy of ap-
proximation at low frequencies and thus it is the best choice
to begin with. A potential drawback is the division required
in the computation of the coefficients, which may be slow
and difficult to implement, e.g., with digital signal proces-
sors. If more sophisticated optimization is desired, other
approximation techniques can be used and the filter can be
implemented by employing the Farrow polynomial structure
or table lookup methods.

Choosing the Right Method

There is a plethora of methods available for engineers willing
to apply fractional delay filters, and one may be confused
about which one to pick. This is a generic problem in many
engineering tasks. We suggest the following general princi-
ple: try simple methods first. This means that, particularly if
one is not quite sure about how to state the magnitude and
phase delay constraints (which is often the case), one should
try Lagrange interpolation with a few taps, e.g., L =2 or
4—remember that the phase delay response is better for
even-length filters. For a comparison of FIR FD filters, see
also Cain, et al. [15]. If allpass filters are preferred, first or
second-order maximally flat group delay (Thiran) filters are
recommended. According to our experience, Lagrange FIR
and Thiran allpass filters are safe solutions in most cases.

Table: Design Methods for Allpass Fractional Delay Filters

Method Parameters Complexity Comments

A. LS-Based Allpass Design

1) LS Phase Design ND Matrix Eq. Noniterative design

2) LS Phase Delay Design ND Matrix Eq. Noniterative design

B. Maximally Flat Design

Thiran Method Closed-form Simple design: try this first

C. Equiripple Design

Weighted LS Design ND Iterative

D. Allpass Delay Control

1) Modified Oetken Method N D prototype filter + zeros Matrix Eq.

2) Recursive Farrow Method N D P and set of allpass filters Polynomial approx. Easy delay control
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On the other hand, one may want to try to find the best
solution for the particular application (e.g., in terms of low
implementation complexity, good magnitude and phase delay
response in the specified frequency band, or flexible on-line
tuning of the delay). To ease the choice we have collected the
essential FIR and allpass FD filter design methods in Tables
1 and 2.

How do we make the basic choice between FIR and allpass
filters? As in the general approximation problem, a recursive
filter meets the magnitude and phase (delay) specifications
with a smaller number of multiplications. However, there
may be additional finite wordlength problems due to roundoff
noise, limit cycles, and possible instability in coefficient
quantization (particularly when the coefficients are changed
on-line). Furthermore, one may encounter transient problems
in real-time tuning applications [105]. The elimination of
transients in variable-coefficient fractional delay allpass fil-
ters has been addressed in [132-135].

Conclusions

In this article, we have addressed the general problem of
approximation of a delay that is a fractional part of the
sampling interval. Both FIR and allpass filter design tech-
niques have been reviewed. We have evaluated various opti-
mization criteria and design techniques from the practicing
engineer’s point of view and have tried to provide a good
tutorial in the topic. The fractional delay approximation is a
generic problem which is encountered in several fields and
applications of DSP.

A set of MATLAB programs for FD filter design is avail-
able via WWW from http://www.hut.fi/HUT/Acous-
tics/fdtools.html or via FTP from helmholtz.hut.fi
(130.233.160.51) using anonymous login (directory
pub/fdtools).
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Appendix A. Examples of FD FIR Filters
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Fig. Al. Truncated LS FIR design. L = 4: (a) Magnitude and (b) phase delay response. L = 10: (c) Magnitude and (d) phase

delay response.
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Fig. A2. Windowed LS FIR design. Fractionally shifted Dolph-Chebyshev window with 40 dB sidelobe ripple. L = 4: (a)
Magnitude and (b) phase delay response. L = 10: (c) Magnitude and (d) phase delay response.
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Fig. A3. LS FIR design with spline transition band (P = 2, w5 =w). L =4, wp=0.1m: (a) Magnitude and (b) phase delay
response. L =10, wp = 0.8m: (c) Magnitude and (d) phase delay response.
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Fig. A4. General LS FIR design (ws=m). L = 4, a = 0.5: (a) Magnitude and (b) phase delay response. L = 10, a = 0.8: (c)
Magnitude and (d) phase delay response.
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Fig. A5. Maximally flat FIR design (Lagrange interpolation). L = 4: (a) Magnitude and (b) phase delay response. L = 10: (c)

Magnitude and (d) phase delay response.
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Fig. A6. Equiripple FIR design. L =4, wp = 0.57: (a) Magnitude and (b) phase delay response. L = 10, wp = 0.8: (c) Magnitude
and (d) phase delay response.
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Fig. A7. Upsampling interpolation FIR design. L = 4, wp = 0.5m: (a) Magnitude and (b) phase delay response. L = 10, wp =
0.8 (¢) Magnitude and (d) phase delay response.
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Appendix B. Examples of FD Allpass Filters
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Fig. B1. Noniterative LS phase allpass design. (a) N =2, wp = 0.5m: phase delay response. (b) N =5, wp = 0.87: phase delay
response.
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Fig. B2. Noniterative LS phase delay allpass design. (a) N = 2, wp = 0.57: phase delay response. (b) N =5, wp = 0.87: phase
delay response.

Figure B3 {a) Figure B3 (b}
d=05 55 d=05

2.6

PHASE DELAY

1.4 ——
0 01 02 03 04 05 08 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
NORMALIZED FREQUENCY NORMALIZED FREQUENCY
(@ (b

Fig. B3. Maximally flat group delay allpass design. (a) N = 2: phase delay response. (b) N = 5: phase delay response.
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Fig. B4. Equiripple phase delay allpass design. (a) N =2, wp=0.5m: phase delay response. (b) N = 5, wp = 0.87: phase delay
response.
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Appendix C. Minimizing the Quadratic Form alPa

When the P matrix is positive definite, there exists a unique
solution for a that minimizes a’Pa (provided that a is con-
strained to be nonzero, e.g., by setting ag = 1 as here). This
solution can be found by eigenfilter techniques [116] or,
alternatively, by solving the set of N equations in the conven-
tional way. To express this solution in explicit form, we first
partition the quadratic form as

1
a’Pa=[1 al]?0 P! [ }
P Pl

=a{Pa; +2p{a; +p; (C1)

where aj =[a1 a3... aN]Tis the vector of the free parameters
to be solved. The optimal solution for aj is found, e.g., by
setting the derivative of (C1) with respect to aj to zero, which
yields the matrix equation

2Pja; +2p; =0 (C2)
The formal solution is thus obtained as
a =—P'p; (C3)

Commercial mathematical program packages like MATLAB
[69] typically contain efficient and numerically robust rou-
tines for the solution of this kind of system of linear equations.
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