Linear pooling of sample covariance matrices

Esa Ollila

Department of Signal Processing and Acoustics
Aalto University, Finland
http://users.spa.aalto.fi/esollila/
DATAIA Seminar, Dec. 18th, 2020

A
Aalto University

Joint work with

Elias Raninen
Aalto University

David E. Tyler
Rutgers University

(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
(4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

Multiple covariance matrices problem

- We are given independent p-variate measurements on K classes:

$$
\mathbf{x}_{1,1}, \ldots, \mathbf{x}_{n_{1}, 1}, \quad \ldots, \quad \mathbf{x}_{1, K}, \ldots, \mathbf{x}_{n_{K}, K}
$$

- Need to estimate the covariance matrices of the classes:

$$
\boldsymbol{\Sigma}_{k}=\mathbb{E}\left[\left(\mathbf{x}_{i, k}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{i, k}-\boldsymbol{\mu}_{k}\right)^{\top}\right]
$$

where $\boldsymbol{\mu}_{k}=\mathbb{E}\left[\mathbf{x}_{i, k}\right]$, for $k=1, \ldots, K$.

- Each $\boldsymbol{\Sigma}_{k} \in \mathbb{S}_{++}^{p \times p}$ (\in set of positive definite matrices)
- Common estimate of $\boldsymbol{\Sigma}_{k}$ is the sample covariance matrix (SCM):

$$
\mathbf{S}_{k}=\frac{1}{n_{k}-1} \sum_{i=1}^{n_{k}}\left(\mathbf{x}_{i, k}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i, k}-\overline{\mathbf{x}}_{k}\right)^{\top}
$$

for $k=1, \ldots, K$.

Multiple covariance matrices problem (cont'd)

- If one assumes equal covariance matrices $\left(\boldsymbol{\Sigma}_{k} \equiv \boldsymbol{\Sigma}\right)$
... one may estimate $\boldsymbol{\Sigma}$ via the pooled SCM:

$$
\mathbf{S}_{\mathrm{pool}}=\sum_{k=1}^{K} \frac{n_{k}}{n} \mathbf{S}_{k}
$$

where $n=n_{1}+n_{2}+\cdots+n_{K}$.

- Challenges:
(1) High-dimensionality (possibly $p>n_{k} \forall k$)
(2) K large (e.g., multiple classes, and each class has subclasses).
(3) Non-gaussian data.
- Common solution is to use regularized (shrinkage) estimators.

Regularized SCM

Regularized SCM (RSCM) estimator:

$$
\mathbf{S}_{k}(\alpha, \beta)=\beta \mathbf{S}_{k}+\alpha \mathbf{T}_{k}
$$

where

- $\mathbf{T}_{k} \succeq 0$ is some fixed shrinkage target matrix
- $\alpha \geq 0, \beta \geq 0$ are weights (different for each k)
- Weights are optimized by minimizing criterions such as
(1) Mean squared error $\mathbb{E}\left[\left\|\mathbf{S}_{k}(\alpha, \beta)-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right]$
(2) Metric $D\left(\mathbf{S}_{k}(\alpha, \beta), \boldsymbol{\Sigma}_{k}\right)$ such as Frobenius, Kullback-Leiber, Riemannian distance, ...
(3) Cross validation
or using Bayesian approaches or expected likelihood approach.

Regularized SCM (cont'd)

$$
\mathbf{S}_{k}(\alpha, \beta)=\beta \mathbf{S}_{k}+\alpha \mathbf{T}_{k} .
$$

But what target \mathbf{T}_{k} to use?
(1) $\mathbf{T}_{k}=\mathbf{I}$. [DLS10, Col15]

Regularized SCM (cont'd)

$$
\mathbf{S}_{k}(\alpha, \beta)=\beta \mathbf{S}_{k}+\alpha \mathbf{T}_{k} .
$$

But what target \mathbf{T}_{k} to use?
(1) $\mathbf{T}_{k}=\mathbf{I}$. [DLS10, Col15]
(2) $\mathbf{T}_{k}=\frac{\operatorname{tr}\left(\mathbf{S}_{k}\right)}{p} \mathbf{I}$ and $\alpha=1-\beta \in[0,1]$. [LW04b, CWEH10, OR19]

Regularized SCM (cont'd)

$$
\mathbf{S}_{k}(\alpha, \beta)=\beta \mathbf{S}_{k}+\alpha \mathbf{T}_{k}
$$

But what target \mathbf{T}_{k} to use?
(1) $\mathbf{T}_{k}=\mathbf{I}$. [DLS10, Col15]
(2) $\mathbf{T}_{k}=\frac{\operatorname{tr}\left(\mathbf{S}_{k}\right)}{p} \mathbf{I}$ and $\alpha=1-\beta \in[0,1]$. [LW04b, CWEH10, OR19]
(3) $\mathbf{T}_{k}=\mathbf{S}_{\text {pool }}$ and and $\alpha=1-\beta$. [Fri89, RO18]

Regularized SCM (cont'd)

$$
\mathbf{S}_{k}(\alpha, \beta)=\beta \mathbf{S}_{k}+\alpha \mathbf{T}_{k}
$$

But what target \mathbf{T}_{k} to use?
(1) $\mathbf{T}_{k}=\mathbf{I}$. [DLS10, Col15]
(2) $\mathbf{T}_{k}=\frac{\operatorname{tr}\left(\mathbf{S}_{k}\right)}{p} \mathbf{I}$ and $\alpha=1-\beta \in[0,1]$. [LW04b, CWEH10, OR19]
(3) $\mathbf{T}_{k}=\mathbf{S}_{\text {pool }}$ and and $\alpha=1-\beta$. [Fri89, RO18]
(9) Highly structured \mathbf{T}_{k} :

- Single (market-)factor matrix [LW03]
- Constant correlation matrix [LW04a]
- Knowledge aided (KA-)STAP matrix [SLZG08].
- Generalized banded matrices [LZZ17]

Double shrinkage SCM

- Step 1: $\hat{\boldsymbol{\Sigma}}_{k}(\beta)=\beta \mathbf{S}_{k}+(1-\beta) \mathbf{S}_{\text {pool }}, \quad \beta \in[0,1]$

Shrink each \mathbf{S}_{k} towards $\mathbf{S}_{\text {pool }}$ to get $\hat{\boldsymbol{\Sigma}}_{k}(\beta)$.

- Step 2: $\hat{\boldsymbol{\Sigma}}_{k}(\alpha, \beta)=\alpha \hat{\boldsymbol{\Sigma}}_{k}(\beta)+(1-\alpha) \frac{\operatorname{tr}\left(\hat{\boldsymbol{\Sigma}}_{k}(\beta)\right)}{p} \mathbf{I}, \quad \alpha \in[0,1]$.

Then regularize $\hat{\boldsymbol{\Sigma}}_{k}(\beta)$ further towards the scaled identity matrix to ensure positive definiteness (even for $p>\sum_{i} n_{i}$).

- [Fri89] used same α and β for each k, and leave-one-out cross validation for choosing them.
- [RO20] uses different α, β for each k and data-adaptive tuning for parameter selection.

This work

- Define

$$
\begin{aligned}
\mathbf{S}(\mathbf{a}) & =\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}, \quad a_{i} \geq 0 \forall i=1, \ldots, K \\
\text { or, } \mathbf{S}(\mathbf{a}) & =a_{K+1} \mathbf{I}+\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}, \quad a_{i} \geq 0 \forall i=1, \ldots, K+1
\end{aligned}
$$

- Find weights that minimizes the (total) MSE:

$$
\begin{aligned}
& \mathbf{a}_{k}^{\star}=\arg \min _{\left(a_{i}\right) \geq 0} \mathbb{E}\left[\left\|\mathbf{S}(\mathbf{a})-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right] \quad \forall k=1, \ldots, K, \\
& \Leftrightarrow \mathbf{A}^{\star}=\left(\mathbf{a}_{1}^{\star} \cdots \mathbf{a}_{K}^{\star}\right)=\underset{\left(a_{i j}\right) \geq 0}{\arg \min } \sum_{k=1}^{K} \mathbb{E}\left[\left\|\mathbf{S}\left(\mathbf{a}_{k}\right)-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right] .
\end{aligned}
$$

- Ideally, use $\hat{\Sigma}_{k}^{\star}=\mathbf{S}\left(\mathbf{a}_{k}^{\star}\right)$.

This work

- Define

$$
\begin{aligned}
\mathbf{S}(\mathbf{a}) & =\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}, \quad a_{i} \geq 0 \forall i=1, \ldots, K \\
\text { or, } \mathbf{S}(\mathbf{a}) & =a_{K+1} \mathbf{I}+\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}, \quad a_{i} \geq 0 \forall i=1, \ldots, K+1
\end{aligned}
$$

- Find weights that minimizes the (total) MSE:

$$
\begin{aligned}
& \mathbf{a}_{k}^{\star}=\arg \min _{\left(a_{i}\right) \geq 0} \mathbb{E}\left[\left\|\mathbf{S}(\mathbf{a})-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right] \quad \forall k=1, \ldots, K, \\
& \Leftrightarrow \mathbf{A}^{\star}=\left(\mathbf{a}_{1}^{\star} \cdots \mathbf{a}_{K}^{\star}\right)=\underset{\left(a_{i j}\right) \geq 0}{\arg \min } \sum_{k=1}^{K} \mathbb{E}\left[\left\|\mathbf{S}\left(\mathbf{a}_{k}\right)-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right] .
\end{aligned}
$$

- Ideally, use $\hat{\boldsymbol{\Sigma}}_{k}^{\star}=\mathbf{S}\left(\mathbf{a}_{k}^{\star}\right)$. In practise, $\hat{\boldsymbol{\Sigma}}_{k}=\mathbf{S}\left(\hat{\mathbf{a}}_{k}\right)$ (where $\hat{\mathbf{a}}_{k} \approx \mathbf{a}_{k}^{\star}$).

Why covariance estimation?

Portfolio selection
0005
\% $7 \cdot 0.0003$
1
+ \triangle 0,0003 14.29\% 0
-7.0.0005-12.50\%

Graphical models

Why covariance estimation (con'd)?

Pedestrian detection [TPM08, JHS^{+}13]

Feature vector:

$$
\mathbf{z}(x, y)=\left(x, y,\left|I_{x}\right|,\left|I_{y}\right|, \sqrt{I_{x}^{2}+I_{y}^{2}},\left|I_{x x}\right|,\left|I_{y y}\right|, \arctan \left(I_{x}\left|/\left|I_{y}\right|\right)\right)^{\top},\right.
$$

where x, y are the pixel coordinates, I_{x}, I_{y} the $1^{\text {st }}$ intensity derivatives, \ldots

(a) Orig. image
(b) $\left|I_{x}\right|$

Covariance descriptor of a region R :
$\mathbf{S}_{R}=\frac{1}{|R|-1} \sum_{(x, y) \in R}(\mathbf{z}(x, y)-\overline{\mathbf{z}})(\mathbf{z}(x, y)-\overline{\mathbf{z}})^{\top}$
where $\overline{\mathbf{z}}=\frac{1}{|R|} \sum_{(x, y) \in R} \mathbf{z}(x, y)$
$\mathbf{S}_{R^{-s}}$ are used as features for an ML algorithm. See [MRO20] for a review.
(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

LINPOOL estimator

- Denote the scaled MSE of the $k^{t h}$ SCM \mathbf{S}_{k} by

$$
\delta_{k}=p^{-1} \operatorname{MSE}\left(\mathbf{S}_{k}\right)=p^{-1} \mathbb{E}\left[\left\|\mathbf{S}_{k}-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right]
$$

- Define matrices

$$
\Delta=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{K}\right) \quad \text { and } \quad \mathbf{C}=\left(c_{i j}\right)=\left(\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{j}\right)}{p}\right) \in \mathbb{R}^{K \times K}
$$

- Theorem: The MSE of $\mathbf{S}(\mathbf{a})=\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}$ is given by

$$
\begin{equation*}
\frac{1}{2 p} \mathbb{E}\left[\left\|\mathbf{S}(\mathbf{a})-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right]=\frac{1}{2} \mathbf{a}^{\top}(\Delta+\mathbf{C}) \mathbf{a}-\mathbf{c}_{k}^{\top} \mathbf{a} \tag{+const}
\end{equation*}
$$

and it is a strictly convex quadratic function in $\mathbf{a} \in \mathbb{R}^{K}$.

LINPOOL estimator (cont'd)

(1) Construct estimates (more on this later):

$$
\begin{aligned}
& \hat{\Delta}=p^{-1} \operatorname{diag}\left(\widehat{\operatorname{MSE}}\left(\mathbf{S}_{1}\right), \ldots, \widehat{\operatorname{MSE}}\left(\mathbf{S}_{K}\right)\right) \\
& \hat{\mathbf{C}}=\left(\hat{\mathbf{c}}_{1} \cdots \hat{\mathbf{c}}_{K}\right)=\left(\frac{\operatorname{tr} \widehat{\left(\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{j}\right)}}{p}\right) \in \mathbb{R}^{K \times K}
\end{aligned}
$$

(2) Solve the (unconstrained) strictly convex quadratic programming (QP) problem:

$$
\begin{aligned}
\hat{\mathbf{a}}_{k} & =\underset{\mathbf{a} \in \mathbb{R}^{K}}{\arg \min } \frac{1}{2} \mathbf{a}^{\top}(\hat{\Delta}+\hat{\mathbf{C}}) \mathbf{a}-\hat{\mathbf{c}}_{k}^{\top} \mathbf{a} \\
& =(\hat{\Delta}+\hat{\mathbf{C}})^{-1} \hat{\mathbf{c}}_{k}
\end{aligned}
$$

(3) If any $\hat{a}_{k j}<0$, then solve

$$
\hat{\mathbf{a}}_{k}=\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathbf{a}^{\top}(\hat{\Delta}+\hat{\mathbf{C}}) \mathbf{a}-\hat{\mathbf{c}}_{k}^{\top} \mathbf{a} \\
\text { subject to } & \mathbf{a} \geq \mathbf{0}
\end{array}
$$

(1) Output: $\hat{\boldsymbol{\Sigma}}_{k}=\mathbf{S}\left(\hat{\mathbf{a}}_{k}\right)$, where $\mathbf{S}(\mathbf{a})=\sum_{i=1}^{K} a_{i} \mathbf{S}_{i} . \quad(k=1, \ldots, K)$

Example 1: single class ($K=1$) case

- In the single class case, we just need to find shrinkage parameter

$$
\begin{aligned}
a_{1}^{\star} & =\underset{a \in \mathbb{R}}{\arg \min } \mathbb{E}\left[\left\|a \mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right]=\left(\delta_{1}+c_{11}\right)^{-1} c_{11} \\
& =\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)}{\operatorname{MSE}\left(\mathbf{S}_{1}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)} \in(0,1)
\end{aligned}
$$

Example 1: single class ($K=1$) case

- In the single class case, we just need to find shrinkage parameter

$$
\begin{aligned}
a_{1}^{\star} & =\underset{a \in \mathbb{R}}{\arg \min } \mathbb{E}\left[\left\|a \mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right]=\left(\delta_{1}+c_{11}\right)^{-1} c_{11} \\
& =\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)}{\operatorname{MSE}\left(\mathbf{S}_{1}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)} \in(0,1)
\end{aligned}
$$

- One can show that $\hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ verifies: $\operatorname{MSE}\left(\hat{\boldsymbol{\Sigma}}_{1}^{\star}\right)=\hat{a}_{1}^{\star} \cdot \operatorname{MSE}\left(\mathbf{S}_{1}\right)$.

Example 1: single class ($K=1$) case

- In the single class case, we just need to find shrinkage parameter

$$
\begin{aligned}
a_{1}^{\star} & =\underset{a \in \mathbb{R}}{\arg \min } \mathbb{E}\left[\left\|a \mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right]=\left(\delta_{1}+c_{11}\right)^{-1} c_{11} \\
& =\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)}{\operatorname{MSE}\left(\mathbf{S}_{1}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)} \in(0,1)
\end{aligned}
$$

- One can show that $\hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ verifies: $\operatorname{MSE}\left(\hat{\boldsymbol{\Sigma}}_{1}^{\star}\right)=\hat{a}_{1}^{\star} \cdot \operatorname{MSE}\left(\mathbf{S}_{1}\right)$.
\Rightarrow Since $0<a_{1}^{\star}<1, \hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ is always more efficient than \mathbf{S}_{1}.

Example 1: single class ($K=1$) case

- In the single class case, we just need to find shrinkage parameter

$$
\begin{aligned}
a_{1}^{\star} & =\underset{a \in \mathbb{R}}{\arg \min } \mathbb{E}\left[\left\|a \mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right]=\left(\delta_{1}+c_{11}\right)^{-1} c_{11} \\
& =\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)}{\operatorname{MSE}\left(\mathbf{S}_{1}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)} \in(0,1)
\end{aligned}
$$

- One can show that $\hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ verifies: $\operatorname{MSE}\left(\hat{\boldsymbol{\Sigma}}_{1}^{\star}\right)=\hat{a}_{1}^{\star} \cdot \operatorname{MSE}\left(\mathbf{S}_{1}\right)$.
\Rightarrow Since $0<a_{1}^{\star}<1, \hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ is always more efficient than \mathbf{S}_{1}.
- Gaussian data: $\left(n_{1}-1\right) \mathbf{S}_{1} \sim \mathcal{W}_{p}\left(n-1, \boldsymbol{\Sigma}_{1}\right)$, so

$$
\operatorname{MSE}\left(\mathbf{S}_{1}\right)=\frac{1}{n_{1}-1}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right)^{2}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)\right) \Rightarrow a_{1}^{\star}=\frac{n_{1}-1}{n_{1}+\gamma / p}
$$

where $\gamma=p \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right) / \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right)^{2} \in[1, p]$ is a measure of sphericity.

Example 1: single class ($K=1$) case

- In the single class case, we just need to find shrinkage parameter

$$
\begin{aligned}
a_{1}^{\star} & =\underset{a \in \mathbb{R}}{\arg \min } \mathbb{E}\left[\left\|a \mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right]=\left(\delta_{1}+c_{11}\right)^{-1} c_{11} \\
& =\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)}{\operatorname{MSE}\left(\mathbf{S}_{1}\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)} \in(0,1)
\end{aligned}
$$

- One can show that $\hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ verifies: $\operatorname{MSE}\left(\hat{\boldsymbol{\Sigma}}_{1}^{\star}\right)=\hat{a}_{1}^{\star} \cdot \operatorname{MSE}\left(\mathbf{S}_{1}\right)$.
\Rightarrow Since $0<a_{1}^{\star}<1, \hat{\boldsymbol{\Sigma}}_{1}^{\star}=a_{1}^{\star} \mathbf{S}_{1}$ is always more efficient than \mathbf{S}_{1}.
- Gaussian data: $\left(n_{1}-1\right) \mathbf{S}_{1} \sim \mathcal{W}_{p}\left(n-1, \boldsymbol{\Sigma}_{1}\right)$, so

$$
\operatorname{MSE}\left(\mathbf{S}_{1}\right)=\frac{1}{n_{1}-1}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right)^{2}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)\right) \Rightarrow a_{1}^{\star}=\frac{n_{1}-1}{n_{1}+\gamma / p}
$$

where $\gamma=p \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right) / \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right)^{2} \in[1, p]$ is a measure of sphericity.
\Rightarrow LINPOOL estimator (for Gaussian data) is $\hat{\boldsymbol{\Sigma}}_{1}=\frac{n_{1}-1}{n_{1}+\hat{\gamma} / p} \mathbf{S}_{1}$.

Examples: equal covariance matrices $\boldsymbol{\Sigma}_{k} \equiv \boldsymbol{\Sigma} \forall k$

- In this case, $\mathbf{C}=c \mathbf{1 1}{ }^{\top}$ with $c=\operatorname{tr}\left(\boldsymbol{\Sigma}^{2}\right) / p$ and

$$
\begin{aligned}
\mathbf{a}_{k}^{\star} & =(\Delta+\mathbf{C})^{-1} \mathbf{c}_{k}=c\left(\Delta+c \mathbf{1 1}{ }^{\top}\right)^{-1} \mathbf{1} \\
\Rightarrow a_{j k}^{\star} & =\frac{\operatorname{MSE}\left(\mathbf{S}_{j}\right)^{-1}}{\|\boldsymbol{\Sigma}\|^{-2}+a}, \quad a=\sum_{i=1}^{K} \operatorname{MSE}\left(\mathbf{S}_{i}\right)^{-1} .
\end{aligned}
$$

- Remarks:
(1) $a_{j k}^{\star}>0$ and $a_{j k}^{\star} \propto \operatorname{MSE}\left(\mathbf{S}_{j}\right)^{-1}$.
(2) $\mathbf{a}_{1}^{\star}=\cdots=\mathbf{a}_{K}^{\star} \Rightarrow \hat{\boldsymbol{\Sigma}}^{\star}=\sum_{j=1}^{K} a_{j k}^{\star} \mathbf{S}_{j}$.
(3) If $\operatorname{MSE}\left(\mathbf{S}_{j}\right)$ is large, then the weight for summand \mathbf{S}_{j} is small.

Examples: equal covariance matrices $\boldsymbol{\Sigma}_{k} \equiv \boldsymbol{\Sigma} \forall k$

- In this case, $\mathbf{C}=c \mathbf{1 1}^{\top}$ with $c=\operatorname{tr}\left(\boldsymbol{\Sigma}^{2}\right) / p$ and

$$
\begin{aligned}
\mathbf{a}_{k}^{\star} & =(\Delta+\mathbf{C})^{-1} \mathbf{c}_{k}=c\left(\Delta+c \mathbf{1 1}{ }^{\top}\right)^{-1} \mathbf{1} \\
\Rightarrow a_{j k}^{\star} & =\frac{\operatorname{MSE}\left(\mathbf{S}_{j}\right)^{-1}}{\|\boldsymbol{\Sigma}\|^{-2}+a}, \quad a=\sum_{i=1}^{K} \operatorname{MSE}\left(\mathbf{S}_{i}\right)^{-1} .
\end{aligned}
$$

- Remarks:
(1) $a_{j k}^{\star}>0$ and $a_{j k}^{\star} \propto \operatorname{MSE}\left(\mathbf{S}_{j}\right)^{-1}$.
(2) $\mathbf{a}_{1}^{\star}=\cdots=\mathbf{a}_{K}^{\star} \Rightarrow \hat{\mathbf{\Sigma}}^{\star}=\sum_{j=1}^{K} a_{j k}^{\star} \mathbf{S}_{j}$.
(3) If $\operatorname{MSE}\left(\mathbf{S}_{j}\right)$ is large, then the weight for summand \mathbf{S}_{j} is small.
(9) Gaussian data: $\left(n_{j}-1\right) \mathbf{S}_{j} \sim \mathcal{W}\left(n_{j}-1, \boldsymbol{\Sigma}\right) \forall j$, so
$\operatorname{MSE}\left(\mathbf{S}_{j}\right)=\frac{1}{n_{j}-1}\left(\operatorname{tr}(\boldsymbol{\Sigma})^{2}+\operatorname{tr}\left(\boldsymbol{\Sigma}^{2}\right)\right) \Rightarrow a_{j k}^{\star}=\frac{n_{j}-1}{n+1-K+\gamma / p}$.
Compare against $\mathbf{S}_{\text {pool }}=\sum_{j=1}^{K} \frac{n_{j}}{n} \mathbf{S}_{j}$ (where $\left.n=\sum_{i} n_{i}\right)$.

LINPOOL estimator with identity shrinkage

- Is $\hat{\boldsymbol{\Sigma}}_{k}=\sum_{j=1}^{K} \hat{a}_{j k} \mathbf{S}_{j}, \hat{a}_{j k} \geq 0$, positive definite $\left(\hat{\boldsymbol{\Sigma}}_{k} \succ 0\right)$?

LINPOOL estimator with identity shrinkage

- Is $\hat{\boldsymbol{\Sigma}}_{k}=\sum_{j=1}^{K} \hat{a}_{j k} \mathbf{S}_{j}, \hat{a}_{j k} \geq 0$, positive definite $\left(\hat{\boldsymbol{\Sigma}}_{k} \succ 0\right)$?
- To account for this, we add \mathbf{I} as an additional summand:

$$
\mathbf{S}(\mathbf{a})=a_{K+1} \mathbf{I}+\sum_{i=1}^{K} a_{i} \mathbf{S}_{i}
$$

where $a_{i} \geq 0, i=1, \ldots, K, a_{K+1}>0$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{K}, a_{K+1}\right)^{\top}$.

LINPOOL estimator with identity shrinkage

- Is $\hat{\boldsymbol{\Sigma}}_{k}=\sum_{j=1}^{K} \hat{a}_{j k} \mathbf{S}_{j}, \hat{a}_{j k} \geq 0$, positive definite ($\hat{\boldsymbol{\Sigma}}_{k} \succ 0$)?
- To account for this, we add \mathbf{I} as an additional summand:

$$
\mathbf{S}(\mathbf{a})=a_{K+1} \mathbf{I}+\sum_{i=1}^{K} a_{i} \mathbf{S}_{i},
$$

where $a_{i} \geq 0, i=1, \ldots, K, a_{K+1}>0$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{K}, a_{K+1}\right)^{\top}$.

- The solution is found identically, since now the MSE is

$$
\frac{1}{2 p} \mathbb{E}\left[\left\|\mathbf{S}(\mathbf{a})-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right]=\frac{1}{2} \mathbf{a}^{\top}(\tilde{\Delta}+\tilde{\mathbf{C}}) \mathbf{a}-\tilde{\mathbf{c}}_{k}^{\top} \mathbf{a},
$$

where

$$
\tilde{\mathbf{C}}=\left(\begin{array}{cc}
\mathbf{C} & \boldsymbol{\eta} \\
\boldsymbol{\eta}^{\top} & 1
\end{array}\right) \quad \text { and } \quad \tilde{\Delta}=\left(\begin{array}{cc}
\Delta & \mathbf{0} \\
\mathbf{0}^{\top} & 0
\end{array}\right)
$$

where $\boldsymbol{\eta}=\left(p^{-1} \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\right), \ldots, p^{-1} \operatorname{tr}\left(\boldsymbol{\Sigma}_{K}\right)\right)^{\top}$.
(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

LINPOOL estimator with convex combination

- Recall that LINPOOL estimator is $\hat{\boldsymbol{\Sigma}}_{k}=\sum_{j=1}^{K} \hat{a}_{j k} \mathbf{S}_{j}$.
- A natural modification is to require that the weights sum to 1 :

$$
\mathbf{1}^{\top} \hat{\mathbf{a}}_{k}=\sum_{j=1}^{K} \hat{a}_{j k}=1
$$

- Note: such constraint presumes that the true covariance matrices share similar scale $\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right) \approx \operatorname{tr}\left(\boldsymbol{\Sigma}_{j}\right)\right)$
- This results in the following QP problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathbf{a}^{\top}(\Delta+\mathbf{C}) \mathbf{a}-\mathbf{c}_{k}^{\top} \mathbf{a} \\
\text { subject to } & \mathbf{a} \geq \mathbf{0} \\
& \mathbf{1}^{\top} \mathbf{a}=1 .
\end{array}
$$

LINPOOL estimator using SDP

- Write $\mathbf{B}=\mathbf{C}+\Delta$. Then note that

$$
\begin{align*}
\frac{1}{2 p} \mathbb{E}\left[\left\|\mathbf{S}(\mathbf{a})-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right] & =\frac{1}{2} \mathbf{a}^{\top} \mathbf{B a}-\mathbf{c}_{k}^{\top} \mathbf{a} \quad(+ \text { const }) \tag{+const}\\
& =\frac{1}{2}\left(\mathbf{a}-\mathbf{B}^{-1} \mathbf{c}_{k}\right)^{\top} \mathbf{B}\left(\mathbf{a}-\mathbf{B}^{-1} \mathbf{c}_{k}\right) \tag{+const}
\end{align*}
$$

- It is possible to minimize the MSE under the constraint $\mathbf{S}(\mathbf{a}) \succeq 0$ by solving following semidefinite program (SDP):

$$
\begin{array}{lll}
\operatorname{minimize} & t & \\
\text { subject to } & \left(\begin{array}{cc}
t & \left(\mathbf{a}-\mathbf{B}^{-1} \mathbf{c}_{k}\right)^{\top} \\
\mathbf{a}-\mathbf{B}^{-1} \mathbf{c}_{k} & \mathbf{B}^{-1}
\end{array}\right) \succeq \mathbf{0} \\
& \mathbf{S}(\mathbf{a}) \succeq \mathbf{0} . &
\end{array}
$$

LINPOOL estimator for multitarget problems

- Single class $(K=1)$ problem, in which we estimate the covariance matrix Σ_{1} from data $\mathcal{X}_{1}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$.
- Let \mathbf{S}_{1} denote the SCM based on the data \mathcal{X}_{1} and $\left\{\mathbf{T}_{m}\right\}_{m=1}^{M}$, $\mathbf{T}_{m} \succeq 0$, our set of target matrices.
- Then the multitarget (MT-)RSCM is defined as

$$
\hat{\boldsymbol{\Sigma}}_{1}=\beta \mathbf{S}_{1}+\sum_{m=1}^{M} \alpha_{m} \mathbf{T}_{m}
$$

Q: How to determine the optimal weights β and $\left\{\alpha_{m}\right\}_{m=1}^{M}$?

LINPOOL estimator for multitarget problems

- Single class $(K=1)$ problem, in which we estimate the covariance matrix $\boldsymbol{\Sigma}_{1}$ from data $\mathcal{X}_{1}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$.
- Let \mathbf{S}_{1} denote the SCM based on the data \mathcal{X}_{1} and $\left\{\mathbf{T}_{m}\right\}_{m=1}^{M}$, $\mathbf{T}_{m} \succeq 0$, our set of target matrices.
- Then the multitarget (MT-)RSCM is defined as

$$
\hat{\boldsymbol{\Sigma}}_{1}=\beta \mathbf{S}_{1}+\sum_{m=1}^{M} \alpha_{m} \mathbf{T}_{m}
$$

Q: How to determine the optimal weights β and $\left\{\alpha_{m}\right\}_{m=1}^{M}$?

- Often the target matrices are not fixed, but also based on the data \mathcal{X}_{1}. \Rightarrow SCM \mathbf{S}_{1} can not be considered independent of \mathbf{T}_{i}-s.
- We enhance independence and use LINPOOL estimator to construct a multitarget-style shrinkage estimator.

The MT-LINPOOL estimator

(1) Generate i.i.d. samples $\mathcal{X}_{m+1} \sim \mathcal{N}_{p}\left(\mathbf{0}, \mathbf{T}_{m}\right)$ for $m=1, \ldots, M$ each of size L.
(2) Compute \mathbf{S}_{1} from \mathcal{X}_{1} and $\mathbf{S}_{2}, \ldots, \mathbf{S}_{M+1}$ from $\mathcal{X}_{2}, \ldots, \mathcal{X}_{M+1}$.
(3) Compute $\hat{\mathbf{C}}$ and $\hat{\Delta}$ based on data sets \mathcal{X}_{1} and $\left\{\mathcal{X}_{m+1}\right\}_{m=1}^{M}$.
(9) $\hat{\mathbf{a}}=\arg \min \frac{1}{2} \mathbf{a}^{\top}(\hat{\Delta}+\hat{\mathbf{C}}) \mathbf{a}-\hat{\mathbf{c}}_{1}^{\top} \mathbf{a}$

$$
a \geq 0
$$

(6) $\hat{\boldsymbol{\Sigma}}_{1}=\hat{a}_{1} \mathbf{S}_{1}+\hat{a}_{2} \mathbf{S}_{2}+\ldots+\hat{a}_{M+1} \mathbf{S}_{M+1}$

Note: one may view L as an additional regularization parameter.

Complex-valued case

- Our framework is general: the LINPOOL estimator can be constructed as earlier, but based on SCM-s,

$$
\mathbf{S}_{k}=\frac{1}{n_{k}-1} \sum_{i=1}^{n_{k}}\left(\mathbf{x}_{i, k}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i, k}-\overline{\mathbf{x}}_{k}\right)^{\mathrm{H}},
$$

of complex-valued observations $\mathbf{x}_{i, k} \in \mathbb{C}^{p}(k=1, \ldots, K)$.
Note: $(\cdot)^{\mathrm{H}}$ denotes the Hermitian transpose.

- Only estimation of \mathbf{C} and Δ are affected (and this is the topic of the next section).
(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
(4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

Estimation of C and Δ

- We needs to estimate the following parameter matrices:

$$
\begin{aligned}
& \Delta=p^{-1} \operatorname{diag}\left(\mathbb{E}\left[\left\|\mathbf{S}_{1}-\boldsymbol{\Sigma}_{1}\right\|_{\mathrm{F}}^{2}\right], \ldots, \mathbb{E}\left[\left\|\mathbf{S}_{k}-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}\right]\right) \\
& \mathbf{C}=\left(c_{i j}\right)=\left(\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{j}\right)}{p}\right) \in \mathbb{R}^{K \times K}
\end{aligned}
$$

- We constuct estimates $\hat{\Delta}$ and $\hat{\mathbf{C}}$ under the assumption that the class distributions are (unspecified) elliptical distributions:

$$
\left\{\mathbf{x}_{i, k}\right\}_{i=1}^{n_{k}} \stackrel{i i d}{\sim} \mathcal{E}_{p}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, g_{k}\right) \quad \text { for each } k
$$

(defined on next slide)

Elliptically symmetric (ES) distributions

$$
\begin{aligned}
& \mathbf{x} \sim \mathcal{E}_{p}(\mathbf{0}, \boldsymbol{\Sigma}, g) \text { when its pdf is [FKN90] } \\
& \qquad f(\mathbf{x}) \propto|\boldsymbol{\Sigma}|^{-1 / 2} g\left(\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right)
\end{aligned}
$$

where

- $\boldsymbol{\Sigma} \in \mathbb{S}_{++}^{p \times p}$ is the unknown covariance matrix.
- $g:[0, \infty) \rightarrow[0, \infty)$ is density generator
- We assume that ES distribution has finite $4^{t h}$-order moments.
- Multivariate normal (MVN) : $g(t)=\exp (-t / 2)$
- The ES family also Includes other distributions such as multivariate t (MVT) with $\nu>2$ d.o.f, generalized Gaussian distribution, etc.
- The (circular) complex elliptically symmetric distributions [OTKP12] can be defined similarly.

Estimate of MSE

We need the following statistics of $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top} \sim \mathcal{E}_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}, g_{i}\right)$:

- sphericity: $\gamma_{i}=\frac{p \operatorname{tr}\left(\boldsymbol{\Sigma}_{i}^{2}\right)}{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)^{2}} \in[1, p]$
- scale: $\eta_{i}=\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)}{p}>0$
- elliptical kurtosis:

$$
\kappa_{i}= \begin{cases}\frac{1}{3} \cdot \operatorname{kurt}\left(x_{1}\right), & \text { real case } \\ \frac{1}{2} \cdot \operatorname{kurt}\left(x_{1}\right), & \text { complex case }\end{cases}
$$

Lemma: The MSE of SCM \mathbf{S}_{i} when data is from $\mathcal{E}_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}, g_{i}\right)$ is

$$
\frac{\operatorname{MSE}\left(\mathbf{S}_{i}\right)}{p}=\eta_{i}^{2} \times \begin{cases}\left(\frac{1}{n_{i}-1}+\frac{\kappa_{i}}{n_{i}}\right)\left(p+\gamma_{i}\right)+\frac{\kappa_{i}}{n_{i}} \gamma_{i}, & \text { real case } \\ \left(\frac{1}{n_{i}-1}+\frac{\kappa_{i}}{n_{i}}\right) p+\frac{\kappa_{i}}{n_{i}} \gamma_{i}, & \text { complex case }\end{cases}
$$

Estimate of MSE

We need the following statistics of $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)^{\top} \sim \mathcal{E}_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}, g_{i}\right)$:

- sphericity: $\gamma_{i}=\frac{p \operatorname{tr}\left(\boldsymbol{\Sigma}_{i}^{2}\right)}{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)^{2}} \in[1, p] \Rightarrow$ next slide
- scale: $\eta_{i}=\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)}{p}>0 \Rightarrow \hat{\eta}_{i}=\operatorname{tr}\left(\mathbf{S}_{i}\right)$
- elliptical kurtosis:

$$
\kappa_{i}=\left\{\begin{array}{ll}
\frac{1}{3} \cdot \operatorname{kurt}\left(x_{1}\right), & \text { real case } \\
\frac{1}{2} \cdot \operatorname{kurt}\left(x_{1}\right), & \text { complex case }
\end{array} \Rightarrow \hat{\kappa}_{i}=\left\{\begin{array}{l}
\frac{1}{3} \cdot \widehat{\operatorname{kurt}}\left(x_{1}\right) \\
\frac{1}{2} \cdot \widehat{\operatorname{kurt}}\left(x_{1}\right)
\end{array}\right.\right.
$$

Lemma: The MSE of SCM \mathbf{S}_{i} when data is from $\mathcal{E}_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}, g_{i}\right)$ is

$$
\frac{\operatorname{MSE}\left(\mathbf{S}_{i}\right)}{p}=\eta_{i}^{2} \times \begin{cases}\left(\frac{1}{n_{i}-1}+\frac{\kappa_{i}}{n_{i}}\right)\left(p+\gamma_{i}\right)+\frac{\kappa_{i}}{n_{i}} \gamma_{i}, & \text { real case } \\ \left(\frac{1}{n_{i}-1}+\frac{\kappa_{i}}{n_{i}}\right) p+\frac{\kappa_{i}}{n_{i}} \gamma_{i}, & \text { complex case }\end{cases}
$$

Estimate of sphericity

- Define a shape matrix $\boldsymbol{\Lambda}_{k}=p \frac{\boldsymbol{\Sigma}_{k}}{\operatorname{tr}\left(\boldsymbol{\Sigma}_{k}\right)}$.

The sphericity measure can then be expressed as $\gamma_{k}=\frac{\operatorname{tr}\left(\boldsymbol{\Lambda}_{k}^{2}\right)}{p}$.

- As an estimator of $\boldsymbol{\Lambda}_{k}$, we use

$$
\begin{aligned}
& \hat{\boldsymbol{\Lambda}}_{k}=\frac{p}{n_{k}} \sum_{i=1}^{n_{k}} \frac{\left(\mathbf{x}_{i, k}-\hat{\boldsymbol{\mu}}_{k}\right)\left(\mathbf{x}_{i, k}-\hat{\boldsymbol{\mu}}_{k}\right)^{\top}}{\left\|\mathbf{x}_{i, k}-\hat{\boldsymbol{\mu}}_{k}\right\|^{2}} \\
& \hat{\boldsymbol{\mu}}_{k}=\arg \min _{\boldsymbol{\mu}} \sum_{i=1}^{n_{k}}\left\|\mathbf{x}_{i, k}-\boldsymbol{\mu}\right\| \quad \quad \text { (spatial median [Bro83]) }
\end{aligned}
$$

- $\hat{\boldsymbol{\Lambda}}_{k}$ is a scaled $(\times p)$ spatial sign covariance matrix [VKO00].

Estimate of sphericity

Theorem 2: Under assumption
(A) $\left\{\mathbf{x}_{i, k}\right\}_{i=1}^{n_{k}} \sim \mathcal{E}_{p}\left(\mathbf{0}, \boldsymbol{\Sigma}_{k}, g_{k}\right)$ and $\gamma_{k}=o(p)$ as $p \rightarrow \infty$ it holds that

$$
\mathbb{E}\left[\hat{\boldsymbol{\Lambda}}_{k}\right]=\boldsymbol{\Lambda}_{k}+o\left(\left\|\boldsymbol{\Lambda}_{k}\right\|_{\mathrm{F}}\right)
$$

- It is easy to show that

$$
\frac{\mathbb{E}\left[\operatorname{tr}\left(\hat{\boldsymbol{\Lambda}}_{k}^{2}\right)\right]}{p}=\frac{p}{n_{k}}+\frac{n_{k}-1}{n_{k}} \underbrace{\frac{\operatorname{tr}\left(\mathbb{E}[\hat{\boldsymbol{\Lambda}}]^{2}\right)}{p}}_{\text {Th. 2: } \rightarrow \gamma \text { as } p \rightarrow \infty}
$$

- Hence

$$
\hat{\gamma}_{k}=\frac{n_{k}}{n_{k}-1}\left(\frac{\operatorname{tr}\left(\hat{\boldsymbol{\Lambda}}_{k}^{2}\right)}{p}-\frac{p}{n_{k}}\right)
$$

is an asymptotically unbiased estimator of γ_{k}.

Estimate of sphericity

Theorem 2: Under assumption
(A) $\left\{\mathbf{x}_{i, k}\right\}_{i=1}^{n_{k}} \sim \mathcal{E}_{p}\left(\mathbf{0}, \boldsymbol{\Sigma}_{k}, g_{k}\right)$ and $\gamma_{k}=o(p)$ as $p \rightarrow \infty$ it holds that

$$
\mathbb{E}\left[\hat{\boldsymbol{\Lambda}}_{k}\right]=\boldsymbol{\Lambda}_{k}+o\left(\left\|\boldsymbol{\Lambda}_{k}\right\|_{\mathrm{F}}\right)
$$

- It is easy to show that

$$
\frac{\mathbb{E}\left[\operatorname{tr}\left(\hat{\boldsymbol{\Lambda}}_{k}^{2}\right)\right]}{p}=\frac{p}{n_{k}}+\frac{n_{k}-1}{n_{k}} \underbrace{\frac{\operatorname{tr}\left(\mathbb{E}[\hat{\boldsymbol{\Lambda}}]^{2}\right)}{p}}_{\text {Th. } 2: \rightarrow \gamma \text { as } p \rightarrow \infty}
$$

- Hence

$$
\hat{\gamma}_{k}=\frac{n_{k}}{n_{k}-1}\left(\frac{\operatorname{tr}\left(\hat{\boldsymbol{\Lambda}}_{k}^{2}\right)}{p}-\frac{p}{n_{k}}\right)-d_{k}
$$

is an asymptotically unbiased estimator of γ_{k}. We also use correction term d_{k} proposed in [ZPFW14].

Estimates of $c_{i j}=\operatorname{tr}\left(\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{j}\right) / p$

- $i=j$: Use $\hat{c}_{i i}=\hat{\eta}_{i}^{2} \hat{\gamma}_{i}$ as an estimator of

$$
c_{i i}=\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}^{2}\right)}{p}=\eta_{i}^{2} \gamma_{i}, \quad i=1, \ldots, K
$$

(where $\eta_{i}=\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right) / p$)

- $i \neq j$: use $\hat{c}_{i j}=\hat{\eta}_{i} \hat{\eta}_{j} \operatorname{tr}\left(\hat{\boldsymbol{\Lambda}}_{i} \hat{\boldsymbol{\Lambda}}_{j}\right) / p$ as an estimator of

$$
c_{i j}=\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{j}\right)}{p}=\eta_{i} \eta_{j} \frac{\operatorname{tr}\left(\boldsymbol{\Lambda}_{i} \boldsymbol{\Lambda}_{j}\right)}{p} .
$$

(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

A simulation study: set-up

dimension	\# of. classes	sample lengths
300	4	$n_{k}=n \forall k$

- $\left\{\mathbf{x}_{i, k}\right\}_{i=1}^{n_{k}} \stackrel{i i d}{\sim} t_{p, \nu}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ with degr. of freedom $\nu=7$.
- $\boldsymbol{\Sigma}_{k}$ has an $\operatorname{AR}(1)$ structure, $\left(\boldsymbol{\Sigma}_{k}\right)_{i j}=\eta_{k} \varrho^{|i-j|}$, where

$$
\varrho_{1}=0.3, \varrho_{2}=0.4, \varrho_{3}=0.5, \varrho_{4}=0.6
$$

and $\eta_{k}=\operatorname{tr}\left(\boldsymbol{\Sigma}_{k}\right) / p=k, k=1, \ldots, K$.

- We compute the normalized MSE (NMSE)

$$
\left\|\hat{\boldsymbol{\Sigma}}_{k}-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2} /\left\|\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}
$$

and total NMSE

$$
\sum_{k=1}^{K}\left\|\hat{\boldsymbol{\Sigma}}_{k}-\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2} /\left\|\boldsymbol{\Sigma}_{k}\right\|_{\mathrm{F}}^{2}
$$

averaged over 1000 MC trials.

A simulation study: estimators

- We use LINPOOL estimator with identity shrinkage:

$$
\hat{\boldsymbol{\Sigma}}_{k}=\sum_{i=1}^{K} \hat{a}_{i k} \mathbf{S}_{i}+\hat{a}_{(K+1) k} \mathbf{I}
$$

- We compare with the MT-RSCM estimators of the form:

$$
\tilde{\boldsymbol{\Sigma}}_{k}=\sum_{i=1}^{K} \tilde{a}_{i k} \mathbf{T}_{i}^{(k)}+\tilde{a}_{(K+1) k} \mathbf{S}_{k}
$$

where $\mathbf{T}_{i}^{(k)} \succeq 0$ are K target matrices for the $k^{\text {th }}$ class.

- As the set of target matrices, we use

$$
\left\{\mathbf{T}_{i}^{(k)}\right\}_{i=1}^{K}=\{\mathbf{I}\} \cup\left\{\mathbf{S}_{i}\right\}_{i \in\{1, \ldots, K\} \backslash k}
$$

Hence the MT-estimator equals LINPOOL estimator, except for its choice of weights.

- We use LOOCV $\left[\mathrm{THX}^{+} 18\right]$ method for computing the optimal MT weights.

Results: NMSE

LOOCV

LINPOOL

Results: Total NMSE

What about just using plain SCMS-s?

SCM

$\operatorname{NMSE}\left(\mathbf{S}_{k}\right) \approx 100 \times \operatorname{NMSE}\left(\hat{\boldsymbol{\Sigma}}_{k}\right)$
(1) Introduction
(2) The linearly pooled estimator
(3) Extensions and modifications
4) Estimation of C and Δ
(5) A simulation study
(6) Portfolio optimization

Basic definitions (cont'd)

- $p:=\#$ of stocks in the portfolio
- $w_{i}:=$ proportion of total wealth allocated to $i^{\text {th }}$ asset, verifying

$$
1=\sum_{i=1}^{p} w_{i}=\mathbf{w}^{\top} \mathbf{1}
$$

- $\mathbf{r}=\left(r_{1}, \ldots, r_{p}\right)^{\top}:=$ net returns of p assets (at some time t).
- Two key statistics of portfolio net return $R=\mathbf{w}^{\top} \mathbf{r}$ are

$$
\begin{array}{cc}
\text { mean return } & \mu_{\mathbf{w}}=\mathbb{E}[R]=\mathbf{w}^{\top} \boldsymbol{\mu} \\
\text { variance (risk) } & \sigma_{\mathbf{w}}^{2}=\operatorname{var}(R)=\mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w} .
\end{array}
$$

- Global minimum variance portfolio (GMVP) allocation strategy:
$\underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{minimize}} \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}$ subject to $\mathbf{1}^{\top} \mathbf{w}=1$.

$$
\Rightarrow \mathbf{w}_{o}=\frac{\boldsymbol{\Sigma}^{-1} \mathbf{1}}{\mathbf{1}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{1}}
$$

- See [FP16] for a great reference on financial engineering.

GMVP stock data analysis

Data sets (daily net returns of daily closing prices)

- $p=50$ stocks in Hang Seng Index (HSI), 1/2016-12/2017.
- $p=45$ stocks in Hang Seng Index (HSI), 1/2010-12/2011.

Sliding window method

- At day t, we use the previous n days to estimate $\boldsymbol{\Sigma}$ and \mathbf{w}.
- portfolio returns are then computed for the following 20 days.
- Window is shifted 20 trading days forward, new allocations and portfolio returns for another 20 days are computed.

GMVP stock data analysis: methods

- We use MT-LINPOOL method with 2 target matrices:
- The single factor market index model \mathbf{T}_{F} computed as in [LW03].
- The constant correlation model \mathbf{T}_{C} computed as in [LW04a]
- MT-LINPOOL-C is same as earlier method but with constraint that weights $\hat{a}_{i k}$ sum to 1 , i.e., $1=\sum_{i} \hat{a}_{i k}=1$.
- We compare against the following methods developed by finance experts (Profs. O. Ledoit and M. Wolf):
(1) LW-improved [LW03]: RSCM with shrinkage towards \mathbf{T}_{F}
(2) LW-honey [LW04a]: RSCM with shrinkage towards \mathbf{T}_{C}.
(3) LW-analytical [LW20]: nonlinear shrinkage of eigenvalues of SCM.

GMVP stock data analysis: results

HSI 2010-2011 $(p=45) \quad$ HSI 2016-2017 $(p=50)$

The proposed MT-LINPOOL approach is able to provide the smallest realised risk results

What's cooking

- The paper is available at ArXiv:
https://arxiv.org/abs/2008.05854
Note: we are currently revising the paper, and extension to complex-valued data is not (yet!) available in the ArXiv submission.
- The codes (MATLAB, python) are also available at:
https://github.com/EliasRaninen
- Also take a look at the related double shrinkage RSCM method:
https://arxiv.org/abs/2011.04315
Coupled regularized sample covariance matrix estimator for multiple classes, E. Raninen and E. Ollila.
- Or find out about robust linear shrinkage methods: https://doi.org/10.1109/TSP. 2020. 3043952
Shrinking the eigenvalues of M-estimators of covariance matrix, E. Ollila, D.P. Palomar, F. Pascal, TSP 2020 (early access).

REFERENCES

RM Brown，Statistical uses of the spatial median，Journal of the Royal Statistical Society．Series B（Methodological）（1983），25－30．
－Angelo Coluccia，Regularized covariance matrix estimation via empirical bayes， IEEE Signal Processing Letters 22 （2015），no．11，2127－2131．
䍰 Yilun Chen，Ami Wiesel，Yonina C．Eldar，and Alfred O．Hero，Shrinkage algorithms for MMSE covariance estimation，IEEE Trans．Signal Process． 58 （2010），no．10，5016－5029．

国 L．Du，J．Li，and P．Stoica，Fully automatic computation of diagonal loading levels for robust adaptive beamforming，IEEE Trans．Aerosp．Electron．Syst． 46 （2010）， no．1，449－458．
Rai－Tai Fang，Samuel Kotz，and Kai－Wang Ng，Symmetric multivariate and related distributions，Chapman and hall，London， 1990.

Tiy Yiyong Feng and Daniel P Palomar，A signal processing perspective on financial engineering，vol．9，Now Publishers， 2016.

國 J．H．Friedman，Regularized discriminant analysis，J．Amer．Stat．Assoc． 84 （1989）， no．405，165－175．

Sadeep Jayasumana，Richard Hartley，Mathieu Salzmann，Hongdong Li，and Mehrtash Harandi，Kernel methods on the riemannian manifold of symmetric
positive definite matrices, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2013, pp. 73-80.
T. Olivier Ledoit and Michael Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of empirical finance 10 (2003), no. 5, 603-621.

T- O. Ledoit and M. Wolf, Honey, i shrunk the sample covariance matrix, The Journal of Portfolio Management 30 (2004), no. 4, 110-119.

O- Olivier Ledoit and Michael Wolf, A well-conditioned estimator for large-dimensional covariance matrices, J. Mult. Anal. 88 (2004), no. 2, 365-411.

國 , Analytical nonlinear shrinkage of large-dimensional covariance matrices, Annals of Statistics 48 (2020), no. 5, 3043-3065.

- Jianbo Li, Jie Zhou, and Bin Zhang, Estimation of large covariance matrices by shrinking to structured target in normal and non-normal distributions, IEEE Access 6 (2017), 2158-2169.

宣
Ammar Mian, Elias Raninen, and Esa Ollila, A comparative study of supervised learning algorithms for symmetric positive definite features, The 28th European Signal Processing Conference (EUSIPCO'20) (Amsterdam, Netherlands), Aug. 24 28 2020, pp. 699-703.

Esa Ollila and Elias Raninen, Optimal shrinkage covariance matrix estimation under random sampling from elliptical distributions, IEEE Transactions on Signal Processing 67 (2019), no. 10, 2707-2719.

俥
Esa Ollila, David E. Tyler, Visa Koivunen, and H. Vincent Poor, Complex elliptically symmetric distributions: survey, new results and applications, IEEE Trans. Signal Process. 60 (2012), no. 11, 5597-5625.

Elias Raninen and Esa Ollila, Optimal pooling of covariance matrix estimates across multiple classes, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP'18) (Calgary, Canada), April 15-20, 2018, pp. 4224-4228.

Elias Raninen and Esa Ollila, Coupled regularized sample covariance matrix estimator for multiple classes, 2020.

Petre Stoica, Jian Li, Xumin Zhu, and Joseph R Guerci, On using a priori knowledge in space-time adaptive processing, IEEE transactions on signal processing 56 (2008), no. 6, 2598-2602.

- Jun Tong, Rui Hu, Jiangtao Xi, Zhitao Xiao, Qinghua Guo, and Yanguang Yu, Linear shrinkage estimation of covariance matrices using low-complexity cross-validation, Signal Processing 148 (2018), 223-233.

Oncel Tuzel, Fatih Porikli, and Peter Meer, Pedestrian detection via classification on riemannian manifolds, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), no. 10, 1713-1727.
S. Visuri, V. Koivunen, and H. Oja, Sign and rank covariance matrices, J. Statist. Plann. Inference 91 (2000), 557-575.
围 Changliang Zou, Liuhua Peng, Long Feng, and Zhaojun Wang, Multivariate sign-based high-dimensional tests for sphericity, Biometrika 101 (2014), no. 1.

