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Covariance estimation problem

x : p-variate (centered) random vector (p large)

x1, . . . ,xn i.i.d. realizations of x.

Problem: Find an estimate Σ̂ of the pos. def. covariance matrix

Σ = E
[
(x− µ)(x− µ)>

]
∈ Sp×p++

where µ = E[x].
The sample covariance matrix (SCM),

S =
1

n− 1

n∑

i=1

(xi − x)(xi − x)>,

is the most commonly used estimator of Σ.

Challenges in HD:

1 Insufficient sample support (ISS) case: p > n.
=⇒ S is singular (non-invertible).

2 Low sample support (LSS) (i.e., p of the same magnitude as n)
=⇒ estimate Σ̂ has a lot of error.

3 Outliers or heavy-tailed non-Gaussian data
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Why covariance estimation?

Portfolio selection Classification/Clustering
The Most Important Applications

graphical models clustering/discriminant analysis

PCA
radar detection

Ilya Soloveychik (HUJI) Robust Covariance Estimation 15 / 47

PCA

The Most Important Applications

graphical models clustering/discriminant analysis

PCA radar detection
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Radar detection

Graphical models

Gaussian graphical model

n-dimensional Gaussian vector

x = (x1, . . . , xn) ∼ N (0,Σ)

xi, xj are conditionally independent (given the rest of x) if

(Σ−1)ij = 0

modeled as undirected graph with n nodes; arc i, j is absent if (Σ−1)ij = 0

1

2

34

5
Σ−1 =




• • 0 • •
• • • 0 •
0 • • • 0
• 0 • • 0
• • 0 0 •
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Bias-variance trade-off

Any estimator Σ̂ ∈ Sp×p++ of Σ verifies

MSE(Σ̂) , E
[
‖Σ̂−Σ‖2F

]
(‖A‖2F = tr(A2))

= var(Σ̂) + bias2(Σ̂)

Since S is unbiased, bias2(S) = ‖E
[
S
]
−Σ‖2F = 0, one has that

MSE(S) = var(S)

but var(S) can be very large when n ≈ p.

3 Use an estimator Σ̂ = Sβ that shrinks S towards a structure (e.g., a
scaled identity matrix) using a tuning (shrinkage) parameter β

MSE(Σ̂) can be reduced by introducing some bias.
Positive definiteness of Σ̂ can be ensured.
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Regularized SCM (RSCM) a lá Ledoit and Wolf:

Sβ = βS + (1− β)[tr(S)/p]I,

where β ∈ [0, 1) denotes the shrinkage (regularization) parameter.
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Modern portfolio theory (MPT)

Mathematical framework by Markowitz [1952, 1959] for portfolio
allocations that balances the return-risk tradeoff. MPT further
developed by Tobin [1958], Sharpe [1964], Malkiel and Fama [1970]∗

A portfolio consist of p assets, e.g.:

- equity securities (stocks), market indexes
- fixed-income securities (e.g., government or corporate bonds)
- currencies (exchange rates),
- . . .

To use MPT one needs to estimate the mean vector µ and the
covariance matrix Σ of asset returns.

7 often p, the number of assets is larger (or of similar magnitude) to n,
the number of historical returns.

∗Nobel price recipients: James Tobin (1981), Harry Markovitz (1990) and Willian F.

Sharpe (1990), and Eugene F. Fama (2013)
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Basic definitions

Portfolio weight at (discrete) time index t:

wt = (wt,1, . . . , wt,p)
> s.t. 1>wt = 1

Let Ci,t > 0 be the price of the ith asset

The net return of the ith asset over one interval is

ri,t =
Ci,t − Ci,t−1

Ci,t−1
=

Ci,t
Ci,t−1

− 1 ∈ [−1,∞)

Single period net returns of p assets form a p-variate vector

rt = (r1,t, . . . , rp,t)
>

The portfolio net return at time t+ 1 is

Rt+1 = w>t rt+1 =

p∑

i=1

wi,tri,t+1
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Assume historical returns {rt}nt=1 are i.i.d., so that

µ = E[rt] and Σ = E
[
(rt − µt)(rt − µt)

>]

holds for all t (so drop the index t from subscript).

Let r denote the (random) vector of returns. Two key statistics of
portfolio return R = w>r are

mean return E[R] = w>µ

variance (risk) var(R) = w>Σw.

Global minimum variance portfolio (GMVP) allocation strategy:

minimize
w∈Rp

w>Σw subject to 1>w = 1.

⇒ wo =
Σ−11

1>Σ−11
.
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S&P 500 and Nasdaq-100 indexes for year 2017
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Are historical returns Gaussian?
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And stocks are unpredictable...

TECH stocks (Facebook, Apple, Amazon, Microsoft, Google) dropped
drastically (in seconds) due to ”fat finger” or automated trade.

...and there is that guy in the white house

Dow Jones Industrial Average:
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Stock data analysis

We apply GMVP to stock data set consitsing of daily net returns
computed from divident adjusted daily closing prices.

Data sets

• p = 45 stocks in Hang Seng Index (HSI), 1/2010 - 12/2011.

• p = 396 stocks in S&P500, 1/2016 - 4/2018.

Sliding window method

• At day t, we use the previous n days to estimate Σ and w.

• portfolio returns are then computed for the following 20 days.

• Window is shifted 20 trading days forward, new allocations and
portfolio returns for another 20 days are computed.
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HSI (Jan/2010 - Dec/2011)
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Regularized SCM and MMSE estimator

Problem: We consider an estimator Sβ,α = βS + αI, where the
weight (shrinkage) parameters are determined by solving

(αo, βo) = argmin
α,β>0

{
E
[∥∥βS + αI−Σ

∥∥2
F

]}
,

7 (αo, βo) will depend on true unknown Σ ⇒ need to estimate (αo, βo)

How to estimate (αo, βo)?

Ledoit and Wolf [2004] (no assumptions on x ∼ F )
Chen et al. [2010] (assumes Gaussianity)

⇒ we avoid strict assumptions, and simply assume that data is sampled
from an unspecified elliptically symmetric distribution.
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Important statistics

Scale measure:

η =
tr(Σ)

p
= mean of eigenvalues

Sphericity measure:

γ =
p tr(Σ2)

tr(Σ)2

=
mean of (eigenvalue)2

(mean of eigenvalues)2

γ ∈ [1, p], and

• γ = 1 iff Σ ∝ I
• γ = p iff rank(Σ) = 1.
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Optimal shrinkage parameters

Define normalized MSE of SCM S as

NMSE(S) =
E
[
‖S−Σ

∥∥2
F

]

‖Σ‖2F

Result 1

Assume finite 4th-order moments.

Optimal shrinkage parameters:

βo =
(γ − 1)

(γ − 1) + γ ·NMSE(S)

αo = (1− βo)η.

and note that βo ∈ [0, 1).

⇒ one may use α̂0 = (1− β̂0)
tr(S)

p
and simply find an estimate β̂0 of β0
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Elliptically symmetric distributions

x ∼ Ep(µ,Σ, g), when its pdf is of the form:

f(x) ∝ ·|Σ|−1/2g
(
[x− µ]>Σ−1[x− µ]

)

where g : [0,∞)→ [0,∞) is the density generator:

Gaussian distribution : x ∼ Np(µ,Σ): g(t) = exp(−t/2).
t-distribution with ν > 4 dof: x ∼ tν(0,Σ), g(t) = . . .

Throughout, we assume finite 4th-order moments.

We also need to introduce the elliptical kurtosis parameter [Muirhead, 1982]:

κ =
E[‖Σ−1/2(x− µ)‖4]

p(p+ 2)
− 1

=
1

3
· {kurtosis of xi}
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Result 2

Optimal shrinkage parameter when x ∼ Ep(µ,Σ, g) is

βEllo =
γ − 1

γ − 1 + κ(2γ + p)/n+ (γ + p)/(n− 1)

γ := sphericity =
p tr(Σ2)

tr(Σ)2
κ := elliptical kurtosis

Note: βEllo = βEllo (γ, κ) depends on unknown γ and κ.

Proof: Use Result 1 and the results:

MSE(S) = E
[
‖S−Σ

∥∥2
F

]
= tr{cov(vec(S))},

cov(vec(S)) =
( 1

n− 1
+
κ

n

)
(I + Kp)(Σ⊗Σ) +

κ

n
vec(Σ)vec(Σ)>,

where Kp is a commutation matrix (Kpvec(A) = vec(A>)).

18/28



Result 2

Optimal shrinkage parameter when x ∼ Ep(µ,Σ, g) is

βEllo =
γ − 1

γ − 1 + κ(2γ + p)/n+ (γ + p)/(n− 1)

γ := sphericity =
p tr(Σ2)

tr(Σ)2
κ := elliptical kurtosis

Note: βEllo = βEllo (γ, κ) depends on unknown γ and κ.

Proof: Use Result 1 and the results:

MSE(S) = E
[
‖S−Σ

∥∥2
F

]
= tr{cov(vec(S))},

cov(vec(S)) =
( 1

n− 1
+
κ

n

)
(I + Kp)(Σ⊗Σ) +

κ

n
vec(Σ)vec(Σ)>,

where Kp is a commutation matrix (Kpvec(A) = vec(A>)).

18/28



Result 2

Optimal shrinkage parameter when x ∼ Ep(µ,Σ, g) is

βEllo =
γ − 1

γ − 1 + κ(2γ + p)/n+ (γ + p)/(n− 1)

γ := sphericity =
p tr(Σ2)

tr(Σ)2
κ := elliptical kurtosis

Note: βEllo = βEllo (γ, κ) depends on unknown γ and κ.

Proof: Use Result 1 and the results:

MSE(S) = E
[
‖S−Σ

∥∥2
F

]
= tr{cov(vec(S))},

cov(vec(S)) =
( 1

n− 1
+
κ

n

)
(I + Kp)(Σ⊗Σ) +

κ

n
vec(Σ)vec(Σ)>,

where Kp is a commutation matrix (Kpvec(A) = vec(A>)).

18/28



1 Portfolio optimization

2 Ell-RSCM estimators

3 Estimates of oracle parameter

4 Compressive Regularized Discriminant Analysis



Estimation of oracle shrinkage parameter

Ell-RSCM estimator is defined as

Sβ̂ = β̂S + (1− β̂)[tr(S)/p]I

where

β̂ = βEllo (γ̂, κ̂)

=
γ̂ − 1

γ̂ − 1 + κ̂(2γ̂ + p)/n+ (γ̂ + p)/(n− 1)

A consistent estimator of κ = 1
3 × { kurtosis of xi} is easy to find:

κ̂ =
1

3
× average of sample kurtosis of x1, . . . , xp

Next we consider two different estimates for sphericity γ.
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Ell1-estimator of sphericity γ

Sample sign covariance matrix [Visuri et al., 2000] is defined as

Ssgn =
1

n

n∑

i=1

(xi − µ̂)(xi − µ̂)>

‖xi − µ̂‖2 ,

where µ̂ = argmin
µ

n∑

i=1

‖xi − µ‖

[Zhang and Wiesel, 2016] proposed a sphericity statistic

γ̂Ell1 = p tr
(
S2
sgn

)
− p

n

and showed that γ̂Ell1 → γ under the random matrix theory regime:

n, p→∞ and
p

n
→ c0, 0 < c0 <∞.

Ell1-RSCM estimator uses β̂ = βo(κ̂, γ̂
Ell1).
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Ell2-estimator of sphericity γ

Consider the statistic:

ϑ̂ = bn

(
tr(S2)

p
− an

p

n

[
tr(S)

p

]2)
,

where

bn =
(κ+ n)(n− 1)2

(n− 2)(3κ(n− 1) + n(n+ 1))
& an =

n

n+ κ

(
n

n− 1
+ κ

)

Note: For large n: ϑ̂ ≈ tr(S2)

p
− (1 + κ)

p

n

[
tr(S)

p

]2
.

Result 4 (holds for any n and p)

E[ϑ̂] =
tr(Σ2)

p
= mean of (eigenvalues)2

⇒ tr(S2)

p
6→ tr(Σ2)

p
unless

p

n
→ 0 as p, n→∞
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The sphericity measure

γ =
mean of (eigenvalues)2

(mean of eigenvalues)2

can be estimated by

γ̂Ell2 =
ϑ̂

[tr(S)/p]2

= b̂n

(
p tr(S2)

tr(S)2
− ân

p

n

)

where ân = an(κ̂) and b̂n = bn(κ̂).

Ell2-RSCM estimator uses β̂ = βo(κ̂, γ̂
Ell2).
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Microarray data analysis (MDA)

Inferring large-scale covariance matrices from sparse genomic data is
an ubiquitous problem in bioinformatics.

microarrays measure the expression of genes
(which genes are expressed and to what
extent) in a given organism.

A challenging framework:

I p = # genes
I n =

∑G
g=1( # of obs. in class g)

I G = # of classes

Microarrays

Microarray

• Physically: a glass slide

Microarray

Feature / probe

oligo / 
cDNA

Collection of features / 
probes

Dataset n p G Disease/organism

Su et al. 102 5,565 4 Multiple mammalian tissues
Yeoh et al. 248 12,625 6 Acute lymphoblastic leukemia
Ramaswamy et al. 190 16,063 14 Cancer

Table 1. Example of real data sets used in our analysis
23/28



Goals:

Assign x ∈ Rp to a correct class (out of G distinct classes).

Reduce # of features without sacrificing the classification accuracy.

Giordano et al. BMC Bioinformatics 2018, 19(Suppl 2):48 Page 42 of 54

model [4], and smoke exposure [5–7]. Several works pro-
pose the use of transcriptome-based exposure response
signatures, computed by processing gene expression data
(RNA/DNA microarray), to develop toxicant exposure
prediction models [8–10]. In most of these approaches,
gene signatures are identified by differential expression,
using statistical tests involving case and control popula-
tions. Due to inter-individual variations present in human
populations, observed gene sets could result in not-robust
signatures. Indeed, robust signatures should maintain
high specificity and sensitivity across independent sub-
ject cohorts, laboratories, and nucleic acid extraction
methods.

In the present work we propose a methodology, as well
as an experimental pipeline, for finding gene signatures
for tobacco smoke exposure characterization and pre-
diction. Our approach integrates different gene selection
mechanisms, whose results are studied and compared to
extract gene signatures more robust than those produced
by a single methodology. In particular, the considered
gene selection methods are based on a regression method
(LASSO-LARS), a recursive elimination by support vec-
tor machines (RFE-SVM), and a feature selection by an
ensemble of decision trees (Extra-Trees). While recent
works start employing machine learning techniques
for gene selection [11–13], the novelty of this work is
to employ and merge the results from different gene
selection methods, which are not limited to statistical
analysis ones.

The sbv IMPROVER project [14] is a collaborative effort
led and funded by Philip Morris International Research
and Development which focuses on the verification of
methods and concepts in systems biology research within
an industrial framework. sbv IMPROVER project has
recently proposed the SysTox Computational Challenge
[15] aiming at exploiting crowdsourcing as a pertinent
approach to identify and verify chemical cigarette smok-
ing exposure response markers from human whole blood
gene expression data. The aim is to leverage these mark-
ers as a signature in computational models for predictive
classification of new blood samples as part of the smoking
exposed or non-exposed groups (see Fig. 1). In this appli-
cation domain we investigated our methodology for gene
expression data processing and selection as a machine
learning problem of feature selection/reduction in a data
space with high dimensionality (in the order of thou-
sands of variables). In this context, we demonstrate how
the blood gene signatures we found with our methodol-
ogy have large overlaps with those found by other related
works. In addition we identified new genes which are not
mentioned in literature as possible biomarkers for tobacco
smoke exposure. The functional annotation and terms
enrichment analysis, together with toxicogenomics anal-
ysis (chemical-gene-disease-pathway association studies),
showed that the expression levels of these new genes are
affected by smoke exposure. In addition, based on our
signatures we obtained higher performances in terms of
area under precision-recall curve (AUPR) and matthews

Fig. 1 SysTox challenge workflow. First stage (up row): gene selection (signature) from the gene expression data from humans blood samples of the
training dataset. Second stage (bottom row): develop inductive prediction models bases on training data from gene signature and provide
classification results on testing dataset
Figure from Giordano et al. [2018]
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Benchmark methods:

nearest shrunken centroid [Tibshirani et al., 2002]

shrunken centroids regularized discriminant analysis [Guo et al., 2007].

Our method, compressive regularized discriminant analysis (CRDA):

3 can be used as fast and accurate gene selection method and
classification tool in MDA

3 provides fewer misclassification errors than its competitors while at
the same time achieving accurate feature elimination.
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Compressive Regularized Discriminant Analysis (CRDA)

Classify x ∈ Rp to class ĝ = argmaxg dg(x), where

d(x) =
(
d1(x), . . . , dg(x), . . . , dG(x)

)

= x>B̂ − 1

2
diag

(
M̂>B̂

)
,

where M̂ =
(
x1 . . . xG

)
, where xg is the sample mean of class g, and

B̂ = HK(S−1
β̂

M̂, q)

hard-thresholding operator HK(·, q) Ell2-RSCM estimator Sβ̂

HK(B, q) retains the elements of the K rows of B that possess
largest `q norm and set elements of the other rows to zero.

I Regularization parameter is K (for a fixed `q-norm q ∈ {1, 2,∞}).
Our default choice for q is q =∞.
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Feature Selection Rate (FSR)

Classification results for data sets of Table 1. Results are averaged over 10
training-to-test set splits (using 60%-to-40% ratio).

Benefits of CRDA:

performs effective
gene selection

a) accurate
classification

b) very fast to
compute

c)
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Thank you!
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