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Abstract—In this paper, we generalize Huber’s criterion to
multichannel sparse recovery problem of complex-valued mea-
surements where the objective is to find good recovery of
jointly sparse unknown signal vectors from the given multiple
measurement vectors which are different linear combinations of
the same known elementary vectors. This requires careful char-
acterization of robust complex-valued loss functions as well as
Huber’s criterion function for the multivariate sparse regression
problem. We devise a greedy algorithm based on simultaneous
normalized iterative hard thresholding (SNIHT) algorithm. Un-
like the conventional SNIHT method, our algorithm, referred
to as HUB-SNIHT, is robust under heavy-tailed non-Gaussian
noise conditions, yet has a negligible performance loss compared
to SNIHT under Gaussian noise. Usefulness of the method is
illustrated in source localization application with sensor arrays.

I. INTRODUCTION

In the multiple measurement vector (MMV)model, a single
measurement matrix is utilized to obtain multiple measure-
ment vectors, i.e., yi = Φxi + ei, i = 1, . . . , Q where
Φ = (φ1 · · · φN ) =

(

φ(1) · · · φ(M)

)H is an M ×N
measurement matrix and ei are the (unobserved) random noise
vectors. Typically there are more column vectors φi than row
vectors φ(j), i.e., M < N . The unknown signal vectors xi,
i = 1, . . . , Q are assumed to be sparse, i.e., most of the
elements are zero. In matrix form, the MMV model is

Y = ΦX+E, (1)

where Y = (y1 · · · yQ) ∈ CM×Q, X = (x1 · · · xQ) ∈
CN×Q and E = (e1 · · · eQ) ∈ CM×Q collect the mea-
surement, the signal and the error vectors, respectively. When
Q = 1, the model reduces to standard compressed sensing
(CS) model [1]. The key assumption of MMV model is that
the signal matrix X is K-rowsparse, i.e., at most K rows
of X contain non-zero entries. The row-support of X is the
index set of rows containing non-zero elements, supp(X) =
{i ∈ {1, . . . , N} : xij #= 0 for some j}. When X is K-
rowsparse, i.e., |supp(X)| ≤ K , joint estimation can lead
both to computational advantages and increased reconstruction
accuracy; See [2], [3], [4], [5], [1], [6].

The objective of multichannel sparse recovery problem is
on finding a row sparse approximation of the signal matrix X
based on knowledge of Y, the measurement matrix Φ and
the sparsity level K . Such a problems arises in electroen-
cephalography and magnetoencephalography (EEG/MEG) [1]
blind source separation [7], and direction-of-arrival (DOA) es-
timation of sources in array and radar processing [8], [9], [10].
Many greedy pursuit CS reconstruction algorithms have been
extended for solving MMV problems. These methods, such as

simultaneous normalized iterative hard thresholding (SNIHT)
algorithm [6] are guaranteed to perform very well provided that
suitable conditions (e.g., incoherence of Φ and non impulsive
noise conditions) are met. The derived (worst case) recovery
bounds depend linearly on ‖E‖2, so the methods are not
guaranteed to provide accurate reconstruction/approximation
under heavy-tailed non-Gaussian noise.

In this paper, we generalize Huber’s criterion [11, cf.
Section 7.7, 7.8] (often referred to as ”Huber’s approach
2”) originally developed for overdetermined linear regression
(M > N , Q = 1) model to the complex-valued case and for
the more general multivariate sparse regression problem. This
requires generalizing robust M -estimates of regression (and
loss functions) for complex-valued case. In Huber’s devise,
one estimates the signal matrix and scale of the error terms
simultaneously. This is necessary since most robust loss-
functions require an estimate of the scale. Using Huber’s
criterion in the MMV model one may elegantly estimate
both the sparse signal matrix and the scale of the errors
simultaneously. In particularly, we are able to circumvent
the problem of obtaining a preliminary robust scale estimate
which is a challenging problem in ill-posed multivariate sparse
regression model since the support of X and hence the
contributing elementary vectors of Φ on measurements are
not known. In earlier related work Huber’s approach 2 has
been considered for Lasso-type real-valued linear regression
setting in [12], [13] and real-valued compressed sensing in
[14]. For our multichannel sparse recovery problem, we devise
SNIHT algorithm which results in a simple, computationally
efficient and scalable approach for solving the MMV sparse
reconstruction problem.

Let us offer a brief outline of the paper. In Section II,
we give necessary notations and definitions as well as provide
motivation and background of robust sparse recovery problem.
Robust complex-valued loss functions and their properties
are outlined in Section III and a generalization of Huber’s
loss function for complex measurements is given. Then, in
Section IV we formulate Huber’s criterion for MMV model
and the related SNIHT algorithm, called HUB-SNIHT, is
derived in Section V. Finally, we illustrate the usefullness of
the method in source localization application in Section VI.

II. BACKGROUND

A. Notations

For a matrix A ∈ CM×N and an index set Γ of cardinality
|Γ| = K , we denote by AΓ (resp. A(Γ)) the M × K (resp.
K × N ) matrix restricted to the columns (resp. rows) of A
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indexed by the set Γ. The ith column vector of A is denoted
by ai and the hermitian transpose of the ith row vector of A
by a(i), A = (a1 · · · aN ) = (a(1) · · · a(M))

H. Furthermore,
if f : C → C, then f(A) refers to element-wise application of
the function to its matrix valued argument, so f(A) ∈ CM×N

with [f(A)]ij = f(aij).

The usual Euclidean norm on vectors will be written as ‖·‖.
The matrix space CM×N is equipped with the usual Hermitian
inner product

〈A,B〉 = Tr(BHA) =
M
∑

i=1

N
∑

j=1

aijb
∗
ij

where the trace of a (square) matrix is the sum of diagonal
entries. We define the weighted inner product as

〈A,B〉W =
M
∑

i=1

N
∑

j=1

wijaijb
∗
ij

where W is M × N real matrix of positive weights. Note
that 〈A,B〉W reduces to conventional inner product when
W is a matrix of ones. The Frobenius norm is given by the
inner product as ‖A‖ =

√

〈A,A〉 and ‖A‖W =
√

〈A,A〉W
denotes the weighted Frobenius norm. The row-!0 quasi-norm
of A is the number of nonzero rows, i.e., ‖A‖0 = | supp(A)|.
Hence the assumption that the signal matrix X ∈ CN×Q is K-
rowsparse in the MMV model is equivalent with the statement
that ‖X‖0 ≤ K .

We use HK(·) to denote the hard thresholding operator:
for a matrix X ∈ CN×Q, HK(X) retains the elements of the
K rows of X that possess largest !2-norms and set elements
of the other rows to zero. Notation X|Γ refers to sparsified
version of X such that the entries in the rows indexed by set
Γ remain unchanged while all other rows have all entries set
to 0.

B. Robust constrained optimization problem

Suppose that the error terms eij are i.i.d. continuous
random variables from a circular distribution [15] with p.d.f.
f(e) = (1/σ)f0(e/σ), where f0(e) denotes the standard
form of the density and σ > 0 is the scale parameter. If
the scale is known, then a reasonable approach for solving
the simultaneous sparse recovery problem is to minimize a
distance criterion of residuals,

Dρ

(

Y −ΦX

σ

)

=
M
∑

i=1

Q
∑

j=1

ρ

(

yij − φH
(i)xj

σ

)

(2)

for some suitable loss function ρ(·) subject to K-rowsparsity
constraint ‖X‖0 ≤ K . For conventional least squares (LS) loss
function ρ(e) = |e|2, the scale can be factored out from the
objective function, and the minimization problem reduces to

min
X

‖Y −ΦX‖2 subject to ‖X‖0 ≤ K.

The well-known problem with LS minimization is that it gives
a very small weight on small residuals and a strong weight on
large residuals, implying that even a single large outlier can
have a large influence on the obtained result.

At least two problems arises when using conventional
robust loss functions in (2). First, commonly used robust loss
functions in robust statistics such as Huber’s or Tukey’s loss
functions require an estimate of scale σ. Obtaining a reliable
robust estimate of scale is a difficult problem. It involves
obtaining a K-rowsparse robust preliminary estimate X̂0 of
the signal matrix and then computing robust scale estimate
based on the resulting residual matrix R0 = Y − ΦX̂0.
Second problem is that robust loss functions are defined in the
real-valued case and some thought must be given on special
properties of complex-valued loss functions. These problems
are addressed next in Section III and Section IV.

III. LOSS FUNCTIONS: COMPLEX VALUED CASE

We start by giving a proper definition of a loss function ρ.

Definition 1: Function ρ : C → R
+
0 is called a loss

function if it verifies:

(L1) ρ is circularly symmetric, ρ(eθx) = ρ(x), ∀θ ∈ R.

(L2) ρ(0) = 0. Furthermore, ρ is R-differentiable function
and increasing in |e| > 0.

Let us first note that condition (L1) is equivalent with the
statement

ρ(x) = ρ0(|x|) (3)

for some ρ0 : R+
0 → R

+
0 . The fact that (3) ⇒ (L1) is obvious

and the converse can be derived by invariance arguments. This
illustrates that ρ is not C-differentiable (i.e., holomorphic or
analytic function). This is of course natural since only func-
tions that are both holomorphic and real-valued are constants.
The complex derivative of ρ w.r.t. x∗ = (xR + xI)∗ is

ψ(x) =
∂

∂x∗
ρ(x) =

1

2

(

∂ρ

∂xR
+ 

∂ρ

∂xI

)

which will be referred in the sequel as the score function. Since
ρ(e) = ρ0(|e|), we can write ψ using basic rules of complex
differentiation [16] in the form

ψ(x) =
1

2
ρ′0(|x|)sign(x),

where
sign(e) =

{

e/|e|, for e #= 0
0, for e = 0

is the complex signum function and ρ′0 denotes the real
derivative of the real-valued function ρ0. In order to make
minimization of (2) possible by simple gradient descent type
algorithms, we narrow down the set of loss functions by
imposing the assumption:

(L3) ρ : C → R
+
0 is a convex function

For example, the conventional LS loss function ρ(x) = |x|2

verifies assumptions (L1)-(L3). In this case, ρ0(r) = r2 and
the score function is ψ(x) = x. In this paper, we assume that
the loss function verifies (L1)-(L3).

We define Huber’s loss function in the complex case as

ρH,c(e) =

{

|e|2, for |e| ≤ c
2c|e|− c2, for |e| > c,

(4)
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where c is a user-defined threshold that influences the degree
of robustness and efficiency of the method. Huber’s function is
a hybrid of !2 and !1 loss functions, using !2-loss for relatively
small errors and !1-loss for relatively large errors. It verifies
conditions (L1)-(L3). Huber’s score (ψ-)function is

ψH,c(e) =

{

e, for |e| ≤ c
c sign(e), for |e| > c

Note that Huber’s ψ is a winsorizing (clipping) funtion: the
smaller the c, the more clipping is actioned on the residuals.

IV. HUBER’S CRITERION FOR MULTICHANNEL SPARSE
RECOVERY

As discussed earlier, the scale σ of the error terms is
unknown and needs to be estimated jointly with the signal
matrix. We discuss here how this can be done elegantly
using Huber’s approach 2. First note that Maximum likelihood
(ML-)approach for solving the unknown X and σ leads to
minimizing the negative log-likelihood function of the form

QML(X,σ) = (MQ) log σ +
M
∑

i=1

Q
∑

j=1

ρ

(

yij − φH
(i)xi

σ

)

where ρ(e) = − log f0(e) depends on the underlying standard
form of the density f0(e) of the error terms. Then, one could
replace the ML loss function ρ with a robust loss function
which need not be related to any circular density f0(·), e.g., the
Huber’s loss function. The negative log-likelihood function is
however not convex in (X,σ). This follows since QML(X,σ)
is not convex in σ (for fixed X) and hence cannot be jointly
convex.

Huber [11] proposed an elegant devise to circumvent the
above problem. See also [12] for further study of Huber’s
approach. We generalize the Huber’s approach 2 for the
complex multivariate regression case and minimize

Q(X,σ) = α(MQ)σ +
M
∑

i=1

Q
∑

j=1

ρ

(

yij − φH
(i)xi

σ

)

σ, (5)

where α > 0 is a fixed scaling factor. Important feature of
the objective function is that it is jointly convex in (X,σ)
given that ρ is convex. In addition the minimizer X̂ preserves
the same theoretical robustness properties (such as bounded
influence function) as the minimizer in the model where σ
is assumed to be known (fixed). This is not the case for the
ML-objective function QML(X,σ).

The stationary point of (5) can be found by setting the
complex matrix derivative ofQ w.r.t.X∗ and the real derivative
of Q w.r.t. σ to zero. Simple calculations then show that
the minimizer (X̂, σ̂) is a solution to a pair of M -estimating
equations:

ΦHψ

(

R

σ

)

= 0 (6)

1

MQ

M
∑

i=1

Q
∑

j=1

χ

(

yij − φH
(i)xj

σ

)

= α (7)

where R = Y −ΦX and χ : R+
0 → R

+
0 is defined as

χ(t) = ρ′0(t)t− ρ0(t). (8)

Recall that notation ψ(R) refers to element-wise application
of ψ-function to its matrix valued argument, so [ψ(R)]ij =
ψ(rij). Thus if ρ is convex and the MMV model is overde-
termined with non-sparse X, solving the above M -estimating
equations would give the global minimum of (5).

The scaling factor α in (5) is chosen so that the obtained
scale estimate σ̂ is Fisher-consistent for the unknown scale σ
when eij ∼ CN (0,σ2), which due to (7) is chosen so that

α = E[χ(e)], e ∼ CN (0, 1).

For many loss functions, α can be computed in closed-form.
For example, for Huber’s function (4) the χ-function in (8)
becomes

χH,c(e) = |ψH,c(e)|
2 =

{

|e|2, for |e| ≤ c
c2, for |e| > c,

and the concistency factor α = α(c) can be easily solved in
closed-form by elementary calculus as

α = c2(1− Fχ2
2
(2c2)) + Fχ2

4
(2c2). (9)

Note that α depends on the threshold c. We will choose
threshold c as c2 = (1/2)F−1

χ2
2

(q) for q ∈ (0, 1). The
rationale behind this choice is that under Gaussian errors,
2|e|2/σ2 ∼ χ2

2. Hence a sensible choice is to determine c so
that 2c2 is the qth upper quantile of the χ2

2-distribution. The
choice q → 1, implies c2 → ∞ and hence no-trimming of
the residuals. In our simulations we use q = 0.8 which yields
c = 1.269. The smaller the c (and hence q) the more trimming
is actioned on residuals.

V. SNIHT ALGORITHM FOR HUBER’S CRITERION

Our aim is at solving

min
X,σ

Q(X,σ) subject to ‖X‖0 ≤ K.

This problem is combinatorial (i.e., NP-hard) but greedy pur-
suit approaches can be devised. Thus due to biconvexity of the
objective function, we can use Huber’s loss function ρH,c(e)
and greedy pursuit NIHT algorithm can be devised to compute
an approximate solution. Recall that NIHT is a projected
gradient descent method that is known to offer efficient and
scalable solution for K-sparse approximation problem [17].
NIHT updates the estimate of X by taking steps towards the
direction of the negative gradient followed by projection onto
the constrained space.

In Huber’s criterion, if we consider σ fixed at a value σ =
σn+1 (the value of σ at (n+ 1)th iteration), the simultaneous
NIHT (SNIHT) update of the signal matrix becomes

Xn+1 = HK

(

Xn + µn+1ΦHRn
ψ

)

where µn+1 is the update of the stepsize at (n+1)th iteration
and

Rn
ψ = ψ

(

Rn

σn+1

)

σn+1

will be referred to as pseudo-residual. Note that
−∇X∗ρ

(

Y−ΦX

σn+1

)

(σn+1)2 = ΦHRn
ψ. The scale is updated
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(consider signal matrix X fixed at a value X = Xn) using
(7) by a fixed-point iteration

(σn+1)2 =
(σn)2

α

1

MQ

M
∑

i=1

Q
∑

j=1

χ

(

rnij
σn

)

,

where Rn = Y −ΦXn

The pseudo-code for the SNIHT algorithm in the case
that the loss function ρ is Huber’s function (4) is given in
Algorithm 1. We refer to this algorithm as HUB-SNIHT in
the sequel. The steps 3-9 can be divided to 3 stages described
below: scale stage (Steps 3, 4) build up the scale update σn+1,
signal stage (Steps 5, 7, 8, 9) build up the K-sparse signal
updateXn+1 and the support Γn+1, and stepsize stage (Step 7)
computes the optimal stepsize update for the gradient descent
move. The computation of the stepsize will be described in
the next two paragraphs. Note that it is possible to tune the
algorithm for different applications by simply altering the
criterion for halting the algorithm. Matlab function is available
at http://users.spa.aalto.fi/esollila/software.html.

Algorithm 1: HUB-SNIHT algorithm
input : Y, Φ, sparsity K , trimming threshold c.
output : (Xn+1,σn+1,Γn+1) estimates of X, σ and

Γ = supp(X).
initialize: X0 = 0, µ0 = 0, n = 0, Γ0 = ∅, α = α(c).

1 σ0 = 1.201 ·median(|yij |, i = 1, . . . ,M, j = 1, . . . , Q)
2 Γ0 = supp(HK

(

ΦHψH,c(Y/σ0))
)

while halting criterion false do
3 Rn = Y −ΦXn

4 (σn+1)2 =
(σn)2

α

1

MQ

M
∑

i=1

Q
∑

j=1

∣

∣

∣

∣

ψH,c

(

rnij
σn

)
∣

∣

∣

∣

2

5 Rn
ψ = ψH,c

(

Rn

σn+1

)

σn+1

6 Gn = ΦHRn
ψ

7 µn+1 = CompStepsize(Rn,Φ,G,Γn, µn,σn+1)
8 Xn+1 = HK(Xn + µn+1Gn)
9 Γn+1 = supp(Xn+1)
10 n = n+ 1
end

As was noted in [17], stepsize selection is very important
for convergence and needs to be adaptively controlled at each
iteration. Given the found support Γn is correct, we choose
µn+1 as the minimizer of the convex objective function (2)
for fixed scale at σn+1 in the gradient ascent direction Xn +
µGn|Γn , i.e.

L(µ) = DρH,c

(

Y −Φ (Xn + µGn|Γn)

σn+1

)

= DρH,c

(

Rn − µBn

σn+1

)

(10)

whereRn = Y−ΦXn and Bn = ΦΓnGn
(Γn). This reduces to

minimizing a simple linear regression (M -)estimation problem
where the response is r = vec(Rn) and the predictor is b =
vec(Bn). It is easy to show (details omitted) that the minimizer

µ̂ of L(µ) is the unique solution to a fixed point (FP) equation
µ = H(µ), where

H(µ) = ‖Bn‖−2
W(µ) Re(〈R

n,Bn〉W(µ)) (11)

where the right hand side depends on the unknown µ via the
weight matrix W(µ), defined as

W(µ) = wH,c

(

Rn − µBn

σn+1

)

,

where wH,c is a weight function based on Huber’s loss
function, defined as

wH,c(e) =
ψH,c(e)

e
=

{

1, for |e| ≤ c
c/|e|, for |e| > c

.

If the loss function is LS-loss ρ(e) = |e|2 (equivalent to
Huber’s function when c → ∞), then the minimizer of (10) is
easily found in closed form since in this case W(µ) is equal
to a matrix of ones. Hence the FP equation is explicit and the
solution is µn+1 = ‖Gn

(Γn)‖
2/‖ΦΓnGn

(Γn)‖
2. This is indeed

the same stepsize used in conventional SNIHT [6].

For Huber’s loss function, the minimizer of (10) can be
found by running the FP iterations until convergence (with
initial value µ0 > 0). Instead, we use approximate of the
solution given by 1-step FP iterate with initial value given
by the previous stepsize µn. In other words, in Step 7, the
update µn+1 is computed as µn+1 = H(µn).

VI. APPLICATION TO SOURCE LOCALIZATION

We consider sensor array consisting of M sensors that
receives K narrowband incoherent farfield plane-wave sources
from a point source (M > K). At discrete time t, the array
output (snapshot) y(t) ∈ CM is a weighted linear combination
of the signal waveforms x(t) = (x1(t), . . . , xK(t))% corrupted
by additive noise e(t) ∈ CM , y(t) = A(θ)x(t) + e(t), where
A = A(θ) is the M × K steering matrix parametrized by
the vector θ = (θ1, . . . , θK)% of (distinct) unknown direction-
of-arrivals (DOA’s) of the sources. Each column vector a(θi),
called the steering vector, represents a point in known array
manifold a(θ). The objective of sensor array source localiza-
tion is to find the DOA’s of the sources, i.e., to identify the
steering matrix A(θ) parametrized by θ. We assume that the
number of sources K is known.

As in [8], we cast the source localization problem as a mul-
tichannel sparse recovery problem. We construct an overcom-
plete M ×N steering matrix A(θ̃), where θ̃ = (θ̃1, . . . , θ̃N )%

represents a sampling grid of all source locations of interest. If
θ̃ contains the true DOA’s θi, i = 1, . . . ,K , then the measure-
ment matrix Y = (y(t1) · · · y(tQ)) ∈ CM×Q consisting
of snapshots at time instants t1, . . . , tQ can be exactlymodelled
as MMV model (1), where the signal matrix X ∈ CN×Q

is K-rowsparse matrix with source signal sequences as its
non-zero row vectors. Thus identifying the source locations
is equivalent to identifying the support Γ = supp(X) since
any i ∈ Γ maps to a DOA θ̃i in the grid. Since the steering
matrix A(θ̃) is completely known, we can use HUB-SNIHT
method to identify the support.

We assume that K = 2 independent (spatially and tem-
porally) complex circular Gaussian source signals of equal
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power σ2
x arrive on an uniform linear array (ULA) of M = 20

sensors with half a wavelength inter-element spacing from
DOA’s θ1 = 0o and θ2 = 8o. In this case, the array manifold
is a(θ) = (1, e−π sin(θ), · · · , e−π(M−1) sin(θ))%. The noise
matrix E ∈ CM×Q has i.i.d. elements following inverse
Gaussian compound Gaussian (IG-CG) distribution [18] with
shape parameter λ = 0.1 and unit variance. CG-IG distribution
is heavy-tailed and has been shown to accurately model radar
clutter in [18]. Note that the covariance matrix of the snapshot
is Cov(y(ti)) = σ2

xA(θ)A(θ)H + IM , so we may use the
popular MUSIC method to localize the sources. In other words,
we search for K = 2 peaks of the MUSIC pseudospectrum
in the grid. We use a uniform grid θ̃ on [−90, 90] with 2o
degree spacing, thus containing the true DOA’s. For the source
localization application, we make the following modifcation to
the algorithm: In Step 1 of HUB-SNIHT algorithm, we locate
the K largest peaks of rownorms of ΦHψH,c(Y) instead of
taking Γ0 as indices of K largest rownorms of ΦHψH,c(Y).

We then use SNIHT, HUB-SNIHT and MUSIC to identify
the support (which gives the DOA estimates) and compute
the empirical probability of exact recovery (PER) rates and the
relative frequency of DOA estimates in the grid based on 1000
MC runs. Full PER rate = 1 implies that the support Γ (and
hence DOA’s) were correctly identified in all MC trials. Such
a case is shown in upper plot of Figure 1 for HUB-SNIHT
when the number of snapshots is Q = 50 and the SNR is −10
dB. The PER rate of HUB-SNIHT was 0.99, but PER rates of
SNIHT and MUSIC were considerably lower, 0.81 and 0.94,
respectively. In the second setting, we lower the SNR to −20
dB. In this case, the conventional SNIHT and MUSIC methods
fail completely and provide nearly a uniform frequency on the
grid. This is illustrated in the middle plot of Figure 1. Note
that the robust HUB-SNIHT provides high peaks on the correct
DOA’s. The PER rates of SNIHT, HUB-SNIHT and MUSIC
were 0.02, 0.48 and 0.01, respectively. Thus only HUB-SNIHT
is able to offer good localization of the sources whereas the
non-robust methods do not provide much better performance
than a random guess. In the 3rd setting, we alter the set-up of
1st setting by decreasing the number of snapshots fromQ = 50
as low as Q = 5. The performance differences between the
methods are now more significant as is illustrated in the lower
plot of Figure 1. In this case the PER rates of SNIHT, HUB-
SNIHT and MUSIC were 0.19, 0.57 and 0.37, respectively.
Again, the HUB-SNIHT performed the best.
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