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Covariance estimation problem

x : p-variate (centered) random vector.

x1, . . . ,xn i.i.d. realizations of x and assume n > p.

The unknown covariance matrix E
[
xx>

]
∈ Sp×p++ is commonly

esimated using the sample covariance matrix (SCM)

S =
1

n

n∑
i=1

xix
>
i .

When p = O(n), then S is very inaccurate estimator.

Regularization: regularized (shrinkage) SCM (RSCM)

Sβ = βS + (1− β)tr(S)
p

I, β ∈ (0, 1]

shrinks the eigenvalues towards the grand mean of the eigenvalues.
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Non-gaussian data and outliers

(R)SCM is sensitive to outliers and non-Gaussianity of the data.

M-estimators of scatter [Mar76] provides a robust alternative:

Σ̂ =
1

n

n∑
i=1

u(x>i Σ̂−1xi)xix
>
i ,

where u : [0,∞)→ [0,∞) is a non-increasing weight function.

We study the natural alternative to the RSCM

S β = βS + (1− β)tr(S )

p
I, β ∈ (0, 1].

⇒ we propose simple and data-adaptive computation of the optimal
MMSE parameter β for Σ̂β for any weight function u.
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Shrinkage M-estimators of scatter

Σ̂β = βΣ̂ + (1− β)tr(Σ̂)

p
I, β ∈ (0, 1].

An M-estimator Σ̂ is consistent to underlying population parameter,
defined as a solution to

Σ0 = E
[
u(x>Σ−10 x)xx>

]
.

Ideally, we would like to find

βo = argmin
β

{
MSE(Σ̂β) = E

[∥∥Σ̂β −Σ0‖2F
]}
,

but the problem is not tractable due to implicit form of M-estimators.
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Surrogate for the M-estimator

An M-estimator Σ̂ can be computed by iterating

Σ̂k+1 =
1

n

n∑
i=1

u(x>i Σ̂−1k xi)xix
>
i , k = 0, 1, . . .

Consider a 1-step M-estimator that starts from true parameter Σ0:

C =
1

n

n∑
i=1

u(x>i Σ−10 xi)xix
>
i .

Then use a 1-step M-estimator

Cβ = βC + (1− β)[tr(C)/p]I

as a proxy for Σ̂β.

Naturally, Cβ is fictional, as the initial value Σ0 is unknown.
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Approximation of the optimum shrinkage

We use

βappo = argmin
β

{
MSE(Cβ) = E

[∥∥Cβ −Σ0

∥∥2
F

]}
.

as approximation for βo. Similar approach was used in [CWH11].

Theorem 1. Given E[tr(C2)] <∞, one has that

βappo =
p(γ − 1)η2o

E[tr(C2)]− p−1E[tr(C)2]

where ηo =
tr(Σ0)
p is a scale and γ is a sphericity measure,

γ =
p tr(Σ2

0)

tr(Σ0)2
.

The expression for βappo can be simplified assuming that samples are
from elliptically symmetric distribution.
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Elliptically symmetric (ES) distributions

x ∼ Ep(0,Σ, g) when its pdf is [FKN90, OTKP12]

f(x) ∝ |Σ|−1/2g
(
x>Σ−1x

)
,

where

Σ ∈ Sp×p++ is the unknown scatter matrix parameter

g : [0,∞)→ [0,∞) is density generator

Multivariate normal (MVN) : g(t) = exp(−t/2)
Multivariate t (MVT) with ν d.o.f : g(t) = (1 + t/ν)−

p+ν
2 .

E[xx>] ∝ Σ
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Shrinkage parameter

The relationship between Σ and the population M-estimator Σ0:

Σ0 = σΣ,

where σ > 0 is a solution to an equation

E
[
ψ

(
x>Σ−1x

σ

)]
= p,

where ψ(t) = u(t)t and u(t) is the weight fnc of the M-estimator.

Define a constant

ψ1 =
1

p(p+ 2)
E
[
ψ

(
x>Σ−1x

σ

)2]
Theorem 2. For {xi}

iid∼ Ep(0,Σ, g)

βappo =
γ − 1

(γ − 1)(1− 1/n) + ψ1(1− 1/p)(2γ + p)/n

where γ is the sphericity measure.
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Shrinkage parameter estimation

βappo depends on

I sphericity measure γ =
p tr(Σ2

0)

tr(Σ0)2

⇒ we use the same estimator as in [ZW16, OR19]:

γ̂Ell1 =
n

n− 1

(
p

n

n∑
i=1

xix
>
i

‖xi‖2
− p

n

)
I Constant depending on the weight function u:

ψ1 =
1

p(p+ 2)
E
[
ψ

(
x>Σ−1x

σ

)2]
where ψ(t) = u(t)t.

⇒ ψ̂1 is discussed next for different M-estimators.

Compute Σ̂β, where β = βappo (γ̂Ell1, ψ̂1).
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Regularized SCM (RSCM) M-estimator

Choose u(t) ≡ 1 for all t

⇒ Σ̂ = S and Cβ = Sβ and hence βo = βappo (approximation is exact)

The constant ψ1 is

ψ1 =
E[(x>Σ−1x)2]

p(p+ 2)
= 1 + κ

where κ = 1
3kurt(xi)

⇒ ψ̂1 = 1 + κ̂.

Sβ = βS + (1− β) tr(S)p I, where β = βappo (γ̂Ell1, ψ̂1).
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Regularized Huber’s (RHub) M-estimator

Huber’s weight function

uH(t; c) =

{
1/b, for t 6 c2

c2/(tb), for t > c2

where c > 0 is a user defined tuning constant and b is a scaling factor.

Define a winsorized observation w:

w = wins(x) =
1√
b
×

x, ‖Σ−1/2x‖2 6 c2

c
x

‖Σ−1/2x‖
, ‖Σ−1/2x‖2 > c2

Constant ψ1 is then
ψ1 = 1 + κw

where κw = (1/3)kurt(wi) ⇒ ψ̂1 = 1 + κ̂w.
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Regularized MVT (RMVT) estimator

Suppose the data follows MVT distribution with ν d.o.f..

The ML-weight function is

uT(t; ν) =
p+ ν

ν + t

The constant ψ1 is then

ψ1 =
p+ ν

2 + p+ ν
.

RMVT estimator:

Compute estimate ν̂ of ν based on the data.

Compute the M-estimator Σ̂ using uT(t; ν̂).

Compute ψ̂1 using ν̂.

Compute Σ̂β, where β = βappo (γ̂Ell1, ψ̂1).
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Simulation studies

Set-up:

i.i.d. data from Ep(0,Σ, g)
Σ has an AR(1) structure, (Σ)ij = 10%|i−j|, where % = 0.6.

p = 40 and n varies from 60 to 280.

We compute the normalized MSE (NMSE)

‖Σ̂β −Σ0‖2F/‖Σ0‖2F

averaged over 2000 MC trials.

We compare with the Ledoit-Wolf estimator [LW04].
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MVN (Gaussian) data
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MVT (t-distributed) data

ν = 5 ν = 3
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Estimate of shrinkage parameter

MVT data with ν = 5 d.o.f.

100 150 200 250

0.5

0.6

0.7

0.8

RMVT RHub RSCM LWE

17/18



What’s cooking

A journal extension is currently being finalized . . . It includes

Extension to complex-valued data

Principled approaches for estimating parameter ν of the MVT
distribution.

Tyler’s M-estimator is also considered.

Advanced approaches for estimating the shrinkage parameter for each
specific M-estimator (Huber, Gaussian, Tyler, MVT).

Application to portfolio optimization: investigation using both
synthetic and real stock returns data.

Journal extension will be sent to ArXiv with Matlab and R codes
made publicly available.
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