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@ Introduction




Covariance estimation problem

@ x : p-variate (centered) random vector.
® Xi,...,Xp, i.i.d. realizations of x and assume n > p.
@ The unknown covariance matrix E[XXT] € Sﬁxf is commonly

esimated using the sample covariance matrix (SCM)

1 n
S=-— inxz—»r.
n -
=1

@ When p = O(n), then S is very inaccurate estimator.
o Regularization: regularized (shrinkage) SCM (RSCM)
tr(S
ss =88+~ ge (1)

shrinks the eigenvalues towards the grand mean of the eigenvalues.
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Non-gaussian data and outliers

o (R)SCM is sensitive to outliers and non-Gaussianity of the data.

@ M-estimators of scatter [Mar76] provides a robust alternative:

79

L1 & .
Y= - ZU(XTE Lxi)xix)

where u : [0,00) — [0,00) is a non-increasing weight function.
@ We study the natural alternative to the RSCM

tr(S )I7

Sp=pS +(1—ﬂ)T Be(0,1].
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Non-gaussian data and outliers

o (R)SCM is sensitive to outliers and non-Gaussianity of the data.

@ M-estimators of scatter [Mar76] provides a robust alternative:
1 n
S Ts-1 T
>H— - Z“(Xz YTUX)XX;

where u : [0,00) — [0,00) is a non-increasing weight function.
@ We study the natural alternative to the RSCM

=83+ (1- ﬂ)“(TE)L B e (0,1].

= we propose simple and data-adaptive computation of the optimal
MMSE parameter 3 for X3 for any weight function u.
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© Shrinkage M-estimators of scatter




Shrinkage M-estimators of scatter

tr(2)

35=84+(1-0) I, Be(01].

e An M-estimator 3 is consistent to underlying population parameter,
defined as a solution to

3= E[u(xTzalx)xxT].
o lIdeally, we would like to find

» = argmin {MSE(EB [Hzg - EOHF]}

but the problem is not tractable due to implicit form of M-estimators.
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Surrogate for the M-estimator

o An M-estimator ¥ can be computed by iterating
Sl = Z Dxix;, k=0,1,...

@ Consider a 1-step M-estimator that starts from true parameter X:

n
E u(x TE X;) XlXT.
i=1

3 I —

@ Then use a 1-step M-estimator
Cs = BC + (1 - B)[tr(C)/plI

as a proxy for ﬁ)g.

e Naturally, Cg is fictional, as the initial value 3 is unknown.
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Approximation of the optimum shrinkage

o We use

40 i {5EC) - 5[] 5 - 3[E] .

as approximation for /3,. Similar approach was used in [CWH11].
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Approximation of the optimum shrinkage

o We use

33— amin {MSE(C) - 5[, - T}

as approximation for /3,. Similar approach was used in [CWH11].
e Theorem 1. Given E[tr(C?)] < oo, one has that

IBapp — p(’7 B 1)773
E[tr(C?)] — p~'E[tr(C)?]

tr(Zo) - . . .
where 7, = % is a scale and ~ is a sphericity measure,

_ ptr(f)
tr(20)2 '
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Approximation of the optimum shrinkage

o We use

33— amin {MSE(C) - 5[, - T}

as approximation for /3,. Similar approach was used in [CWH11].
e Theorem 1. Given E[tr(C?)] < oo, one has that

IBapp — p(’7 B 1)773
° E[tx(C?)] - pE[tr(C)?]
where 7, = tr(}%o) is a scale and + is a sphericity measure,
_ ptr(XF)
- tr(20)2 '

@ The expression for 35°P can be simplified assuming that samples are
from elliptically symmetric distribution.
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© Shrinkage parameter computation




Elliptically symmetric (ES) distributions

x ~ &,(0,X, g) when its pdf is [FKN90, OTKP12]

f(x) o [Z[72g(x T2 x),

where

IDINS Sﬂxf is the unknown scatter matrix parameter

@ ¢g:[0,00) — [0,00) is density generator

e Multivariate normal (MVN) : g(t) = exp(—t/2)
e Multivariate ¢ (MVT) with v d.o.f: g(t) = (1 + t/y>_p+TV_
o Exx'] x =
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Shrinkage parameter

@ The relationship between X and the population M-estimator X:
20 = O'E,

where ¢ > 0 is a solution to an equation

(2

where ¥ (t) = u(t)t and wu(t) is the weight fnc of the M-estimator.

@ Define a constant
1 x 2 1x\2
= E
V1 p(p+2) [1/}( o ”

e Theorem 2. For {x;} o £,(0,%,9)

app _ Y= 1
C (y=1)A=1/n)+ (1 -1/p)(2y +p)/n
where v is the sphericity measure.
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Shrinkage parameter estimation

o B5PP depends on

ptr(E3)

tr(20)2

= we use the same estimator as in [ZW16, OR19]:

~ENL __
! n—l(zuxw )

» Constant depending on the weight function u:

w5

where ¥ (t) = u(t)t.

= 11 is discussed next for different M-estimators.
e Compute 2,3, where 3 = 8PP (¥ Ell1 ¢1)

» sphericity measure v =
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Regularized SCM (RSCM) M-estimator

@ Choose u(t) =1 for all ¢
— 3 =S and Cs = Sg and hence 8, = 35" (approximation is exact)

@ The constant v is

E[(x"Z71x)?]

=1+k
p(p+2)

Y1 =
where r = tkurt(z;)

= @;]_ =1+k.
o S5 =BS + (1 — B)L, where 8 = BEPP(551, ).
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Regularized Huber’s (RHub) M-estimator

@ Huber's weight function

(t:0) 1/b, for t < 2
un(t;c) =
" 2/(th), fort>c?

where ¢ > 0 is a user defined tuning constant and b is a scaling factor.

@ Define a winsorized observation w:

X, ||2_1/2X||2 < CQ

X X —
e R L e

W = wins(x) =

Sl-

@ Constant v is then
Y1 =1+ kw

where kyw = (1/3)kurt(w;) = 1 = 1 + Aw.
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Regularized MVT (RMVT) estimator

@ Suppose the data follows MVT distribution with v d.o.f..
@ The ML-weight function is

p+v
tv) =
uT(vy) V+t
@ The constant v is then
_ btV
P = CE——

RMVT estimator:
@ Compute estimate I of v based on the data.
o Compute the M-estimator 3 using ur(t; ).
o Compute 1&1 using U.
o Compute ﬁ]g, where 8 = B3PP(4EIL 4))).
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@ Simulation studies




Simulation studies

Set-up:
e i.i.d. data from &£,(0, %, g)
o X has an AR(1) structure, (X);; = 100/"=7!, where ¢ = 0.6.
@ p =40 and n varies from 60 to 280.
e We compute the normalized MSE (NMSE)

1355 — Soll/1Zollf

averaged over 2000 MC trials.
o We compare with the Ledoit-Wolf estimator [LW04].
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MVN (Gaussian) data
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MVT (¢-distributed) data
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Estimate of shrinkage parameter

MVT data with v =5 d.o.f.
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What’s cooking

A journal extension is currently being finalized ... It includes
@ Extension to complex-valued data

@ Principled approaches for estimating parameter v of the MVT
distribution.

@ Tyler's M-estimator is also considered.

@ Advanced approaches for estimating the shrinkage parameter for each
specific M-estimator (Huber, Gaussian, Tyler, MVT).

@ Application to portfolio optimization: investigation using both
synthetic and real stock returns data.

@ Journal extension will be sent to ArXiv with Matlab and R codes
made publicly available.
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