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© Introduction




Linear model

e Outputs (responses) y; € R
e Inputs (predictors) =, = (x4, ..., ;) € RP.
@ Linear model of N measurements:

n 371T €1
=18+

YN b en
y = X g+ e

where the error terms ¢; are i.i.d. with p.d.f. f(e) = (1/0)fo(e/o).
@ Goal: to estimate robustly the unknown parameters

» regression coefficients 5 = (f1,. .. ,ﬂp)T e RP
» scale parameter o > 0

given the data (y;,z;),i=1,...,N.
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Contributions

Huber's criterion [Hub81] for joint estimation of regression and scale:

L(B,0) = N(ao +ch<yz _O_x ﬂ) o,

i=1
where o > 0 is a fixed scaling factor and p. is Huber's loss function.
@ Block-wise MM-algorithm for solving the optimum (B,&) is derived
rigorously.
@ Novel data-adaptive step sizes for regression and scale updates:
= improves convergence (observed empirically)
© Applications of Huber's criterion are considered for:

» Sparse signal recovery
» Image denoising
» Dictionary learning

@ Toolbox at: github.com/AmmarMian/huber_mm_framework
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github.com/AmmarMian/huber_mm_framework

N7 rrze

© Maximum likelihood estimation




Robust ML approach

@ Huber's unit scale (¢ = 1) “least favorable distribution” (LFD) has
p.d.f. fo(x) x exp{—pc(z)}, where

1 z|?, for |z| < ¢
pc(:c)zix{H ) <] z € R,

2c|z| — 2, for |z| > ¢,

is called as Huber's loss function and ¢ is a user-defined threshold.
@ The score function, 1. = pl. is a winsorizing function:

el) = {ac7 for |z| < ¢

csign(z), for |z| > ¢’

—c=1.345
——c=0.732
— =
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But direct ML approach fails

@ The ML criterion function (assuming i.i.d. errors from LFD model)

)]

—y
g

i=1

fails...
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But direct ML approach fails

@ The ML criterion function (assuming i.i.d. errors from LFD model)

)]

—y
g

i=1
fails...
» to be convex in (3, 0)
» to provide robust estimates (bounded influence functions)
@ Huber's modification

L(B,0) = N(ao +ch(y’ _Ux ’8> o,

=1

is convex in (8, 0) and provides robust estimates with bounded
influence function.

5/13



© Blockwise Minimization-Majorization algorithm




Blockwise Minimization-Majorization algorithm

ot — arg min g (U|B(n), O'(n))

, =0,1,...
ﬂ(n+1) — argﬂmmgl (Bw(n) n+1))

@ g9 is surrogate function for scale:
go(o|p 0’y =d + b/ + Nao,

st. L(B',0") = g2(d’|B8,0") and V,L(B',0") = Vygo(a'|f,0").
e g1 is a surrogate function for regression (and denote r; = y; — z,| B):

2
7

088, 0") = N(ad’ +z(a +b i %(T,'))

st. L(B,0") =g(p'|p,0") and V3L(3',0") = Vag(B'|3,0).
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e go(c|f',0’) > L(B',0) and the MM update of scale is

o™+ = argmin go(c]8™, 0™) = oW1 ,

>0

-l ()|

e ¢1(8|8,0’) > L(B,0") and the MM update for regression is

where

BU+D = argmin gy (B8, 0™V = g +5
BERPH1

X+¢c<y—Xﬂ )0’ n+1).

where

(n+1)
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e go(c|f',0’) > L(B',0) and the MM update of scale is

o™+ = argmin go(c]8™, 0 = gAY

>0

-l ()|

e ¢1(8|8,0’) > L(B,0") and the MM update for regression is

where

B+D = argmin g1 (81", 0™ *V) = B 4 g+,
BeRpt+1

5 = X-i-wc(y - Xﬂ(n))a(n—l—l).

0‘(”+1)

where

o We introduce step-sizes A" and (") to speed up the convergence.
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Step size computation

@ To compute the step sizes we use line search.
o For regression, we minimize L(8™ + ud, o™ D) w.rt. u:

ol (n) T
. — ux, o
M(n-i—l) = arg min g pc((n—_ﬁ))
- 1

1=

o For scale, we minimize L(8(™, o™ 7) wort. X:

. )
P Cagl) —argmm Nar? +Z (—yZ z; B )T’\

oA
i=1

@ Instead of solving the optimization problems exactly, we use
closed-form approximations of the solutions (cf. Algorithm 1).
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@ Sparse learning and image denoising




Sparse learning

@ Blockwise MM algorithm extends to normalized iterative
hard-thresholding (NIHT) [BD10] algorithm used in sparse signal
reconstruction. [DET06, DE11].

@ [ is now assumed to be K-sparse:
I={ie{l,....p} : Bi#0} with [|Blo=T]<K.

@ # predictors > # of measurements (p > N).
@ The main change in block MM algorithm is in the regression step:

n n n y - Xﬁ(n) n
B = Hy (ﬂ( )4l “)X%( e )" ),

where H denotes the hard-thresholding operator (1. = pl.).
@ The algorithm is called HUBNIHT [OKK14] algorithm.
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Image denoising

@ grayscale image is denoised in sliding windows (patches) of size 8 x 8.

@ Each vectorized patch is modelled as
y=u+te,

where u is the original noise-free image of size N x 1

@ N = 64 ( # of pixels in patches).

@ u is assumed to have a sparse representation in an overcomplete
dictionary X, i.e.,, u = Xp

@ Reconstructed image patch i = XB is solved using the HUBNIHT
algorithm.

@ We use threshold ¢ = 0.3529 and X is the redundant 2D-DCT
dictionary
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Denoised images

Noisy image K = 3,PSNR = 24.50
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Comparisons

Noisy image HUBNIHT, K =11 Median filter, 3 x 3
PSNR = 14.95 dB PSNR = 28.93 dB PSNR = 26.27 dB

K-SVD, c= 3 A= BM3D
PSNR = 21.58 dB PSNR = 24.17 dB
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What’s cooking

A journal extension is currently being prepared ... It includes
@ More examples and applications
o Extended simulation studies and image denoising examples.
@ Tuning of parameters (threshold ¢ and sparsity K') are discussed.
o Large extended discussion of dictionary learning applications for
medical imaging.
Journal extension will be sent to ArXiv

@ Matlab and python functions are made publicly available with
example scripts.
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