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Abstract—The widely used fixed-point FastICA algorithm has
been derived and motivated as being an approximate Newton-
Raphson (NR) algorithm. In the original derivation, the La-
grangian multiplier is treated as a constant and an ad-hoc
approximation is used for Jacobian matrix in the NR update. In
this paper, we provide an alternative derivation of the FastICA
algorithm without approximation. We show that any solution to
the FastICA algorithm is a solution to the exact NR algorithm as
well. In addition, we propose a novel power iteration algorithm for
FastICA which is remarkably more stable than the fixed-point
algorithm, when the sample size is not orders of magnitudes
larger than the dimension. Our proposed algorithm can be run
on parallel computing nodes.

Index Terms—Independent Component Analysis; FastICA;
Newton-Raphson method; Power method

I. INTRODUCTION

Independent component analysis (ICA) [1]–[3] is a widely
used signal processing technique in extracting unobserved
independent source signals from their observed multivariate
mixture recordings. The FastICA fixed-point algorithm [1], [2]
is one of the most popular ICA algorithms.

The derivation of the FastICA algorithm [1] requires that the
data is centered and pre-whitened, so that we have equal num-
ber of mixtures as there are unknown sources. The observed
whitened random vector x ∈ Rd is then a linear mixture
of the unobserved random source vector s = (s1, . . . , sd)>

possessing statistically independent components (IC’s), i.e.,

x = W>s = w1s1 + · · ·+ wdsd, (1)

where the unknown d×d mixing matrix W> =
(
w1 · · · wd

)
is an orthogonal matrix. Due to whitening and centering, we
have that E[s] = 0 and E[xx>] = I. Note that since there
is a scale ambiguity in solving the ICA model, it is assumed
without loss of generality that E[s2i ] = 1, i = 1, . . . , d. Fur-
thermore, the mixing matrix of the whitened data is orthogonal
i.e. E[xx>] = W>E[ss>]W = W>W = I.

The 1-unit FastICA estimator finds a demixing vector w as
a local maxima of a non-Gaussianity measure

∣∣E[G(w>x)
]∣∣

under the unit-norm constraint
∥∥w∥∥2 = w>w = 1, where

G can be any twice continuously differentiable nonlinear
and non-quadratic function with G(0) = 0. Thus the 1-unit
FastICA estimator maximizes the Lagrangian

L(w;λ) =
∣∣E[G(w>x)

]∣∣− λ

2
(w>w − 1), (2)

where λ is the Lagrange multiplier. We write g = G′ and
g′ = G′′ for the 1st and 2nd derivative of G respectively, where
g is referred to as ICA nonlinearity. The local optimum of (2)

verifies the following estimating equation, which is obtained
by setting the gradient of the Lagrangian w.r.t. w to zero.

F (w) = m(w)− λ(w)w = 0, (3)

where m(w) = E[g(w>x)x] and λ(w) = w>m is obtained
by multiplying both sides of (3) by w> from the left. The 1-
unit fixed-point FastICA algorithm in [1] is motivated as being
an approximate NR update for solving (3). The algorithm
iterates

w← m(w)− β(w)w

‖m(w)− β(w)w‖
(4)

until convergence. The term β(w) in (4) is a scalar multiplier
defined as β(w) = E[g′(w>x)] ∈ R.

In the original derivation of the FastICA algorithm [1] and
[2, C. 8 p. 189] the Lagrangian and the Jacobian matrix are
oversimplified using unnecessary assumptions. To be more
specific, in the NR formulation, the Lagrangian multiplier
λ(w) is treated as a constant that does not depend on w. Due
to this simplification, a post-normalization step is necessary in
order to keep the NR update in the feasible set. Also, an ad-
hoc approximation of the Jacobian matrix of F (w) is utilized
that does not necessarily have a clear statistical justification.

In this paper, we provide an alternative derivation of the
fixed-point FastICA algorithm which does not require sim-
plifying assumptions. Specifically, we show that any solution
to (4) is a solution to the exact NR algorithm as well. Fur-
thermore, our new derivation of the FastICA algorithm leads
us to propose a new power iteration (PI) method for FastICA
which is shown to be significantly more stable than the original
FastICA algorithm. The proposed PI method always converges
to a valid solution even if the common case of d � n is not
valid, i.e. the dimensionality and the number of observations
are of the same order. This is the finite-sample regime in which
the FastICA algorithm is often reported to have convergence
problems; See Table I in [4], Table III - VI in [5] and Table I
in this paper. Our proposed method can be run on parallel
computing nodes, which drastically reduces the computational
time. This may not be possible with the FastICA algorithm.

The paper is organized as follows. In Section II, the original
derivation of the FastICA algorithm in (4) is reviewed and
the underlying assumptions are discussed. In Section III, a
novel derivation of the FastICA algorithm is provided. In
Section IV we view the FastICA algorithm as a power iteration
(PI) method. This leads to new power iteration FastICA
algorithm which is described in Section V. Section VI provides
numerical examples and Section VII concludes the paper.
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II. ORIGINAL DERIVATION OF THE FASTICA ALGORITHM

A compact overview of the original derivation of FastICA
algorithm [1], [2] is provided. Furthermore, we point out some
oversimplifying assumptions that can be relaxed.

The Newton-Rapshon update for solving F (w) = 0 is

w← w − [JF (w)]−1F (w), (5)

where JF denotes the Jacobian of F (·) in (3) w.r.t. w.
First, the Lagrangian multiplier λ(w) = w>m in (3) is

treated as a constant that does not depend on w. As a conse-
quence, an additional post-normalization step is necessary to
keep the update in the feasible set:{

w← w − [M(w)− λI]−1F (w)

w← w/ ‖w‖
, (6)

where M(w) = E[g′(w>x)xx>] and [M(w) − λI] is the
Jacobian of F (·) when λ is treated as a constant. Furthermore,
an ad-hoc approximation for M(w) is utilized [2, C. 8 p. 189]:

M(w) ≈ E[g′(w>x)]E[xx>] = β(w)I, (7)

where β(w) is defined in (4). Note that, this approximation
does not have statistical justification. This follows from the
property that the expectation operator is not multiplicative
unless the involved random variables are independent or at
least uncorrelated. By substituting the approximation in (7) to
(6), one obtains the following updates:{

w← w − F (w)/(β(w)− λ)

w← w/ ‖w‖
, (8)

Substituting F (w) from (3) in (8) then results in the 1-unit
FastICA algorithm that was given in (4). It has been shown in
[1], [2] that the algorithm converges up to a sign ambiguity
to one of the rows, say wk, of the demixing matrix W given
that E[skg(sk)] 6= E[g′(sk)], with sk = w>k x. It is not known,
however, to which row vector wk the algorithm converges to.
It usually depends on the initial start of the algorithm.

III. ALTERNATIVE DERIVATION

The main contribution of this section is to provide an
alternative derivation of the fixed-point FastICA algorithm (4).
In our derivation, λ(w) = w>m is not treated as a constant
and the questionable approximation (7) is not used. We show
that the solution wk of the fixed-point equation (4) is also a
solution to the exact NR algorithm (5). This fact has not been
shown in the literature so far. The following Lemma is needed
in our derivations.

Lemma 1. Let x be a random vector following the ICA model
(1) and define Mk = M(wk) = E

[
g′
(
sk
)
xx>

]
∈ Rd×d. Then

[a] Mk = αkwkw
>
k + βk

∑d
j=1,j 6=k wjw

>
j ,

where αk = E[g′(sk)s2k] and βk = β(wk) = E
[
g′
(
sk)
]
.

[b] (I−wkw
>
k )Mk = βk(I−wkw

>
k ).

Proof. [a] Note that x = W>s, so that

E[g′(sk)xx>] = W>E[g′(sk)ss>]W

= W>diag(βk, . . . , αk, . . . , βk)W

= αkwkw
>
k + βk

∑
j 6=k

wjw
>
j .

Above we used that E[g′(sk)s2i ] = E[g′(sk)]E[s2i ] = E[g′(sk)]
for k 6= i and E[g′(sk)sisj ] = E[g′(sk)]E[sisj ] = 0 as
sources are independent and of unit variance. The EVD above
also implies that w>k Mkwk = αk.

[b], The [a]-part of the Lemma 1 yields

(I−wkw
>
k )Mk = (I−wkw

>
k )
(
αkwkw

>
k + βk(I−wkw

>
k )
)

= (I−wkw
>
k )
(
αkwkw

>
k + βkI

)
= βk(I−wkw

>
k )

which gives the stated result.

Corollary 1. Using the result of Lemma 1[a], the LHS of
(7) at the solution sk = w>k x is:

M(wk) = E[g′(sk)xx>] = βkI + (αk − βk)wkw
>
k ,

where (αk−βk) is the spectral gap between the two eigenval-
ues of M(wk). Such a spectral gap is neglected in the RHS of
(7). This implies that the approximation (7) may not be valid
even when w>x is close to sk.

Since the Lagrange multiplier λ(w) = w>m depends
on the unknown parameter w, the true (non-approximate)
Jacobian matrix of F (w) in (3) is

JF (w) = (I−ww>)M(w)− λ(w)I−wm>. (9)

For a given solution to (3), wk, we may use Lemma 1[b] to
reformulate (9) as

JF (wk) = βk(I−wkw
>
k )− λkI−wkm

>
k =

(βk − λk)I−wk(βkw
>
k + m>k ) = (βk − λk)I−wkv

>
k ,
(10)

where mk = E[g(w>k x)x], λk = w>k mk and vk = (βkwk +
mk). Next, we use the Sherman-Morrison matrix inversion
lemma [6] to write

[JF (wk)]−1 =
(

(βk−λk)I−wkv
>
k

)−1
=

1

βk − λk

(
I−wkv

>
k

2λk

)
.

Thus, for any solution to (3), the term [JF (w)]−1F (w) in (5)
becomes

[JF (wk)]−1F (wk) =
1

βk − λk

(
I− wkv

>
k

2λk

)
(mk − λkwk)

=
1

βk − λk
(mk − λkwk) , (11)

where the last identity follows because v>k (mk − λkwk) =
(βkwk + mk)>(mk − λkwk) = 0; This property follows by
recalling that λk = m>k wk and noting that m>k mk = λ2k
which is obtained by multiplying both sides of (3) by m>k .
Using (11), the NR update in (5) becomes

wk − [JF (wk)]−1F (wk) =
mk − βkwk

λk − βk
. (12)

Note that ‖mk − βkwk‖2 = m>k mk + β2
kw
>
k wk −
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2βkm
>
k wk = (λk − βk)2 where we again used m>k mk = λ2k

and λk = m>k wk. Hence the NR update in (12) becomes

wk − [JF (wk)]−1F (wk) = ± mk − βkwk

‖mk − βkwk‖
, (13)

which is the solution to the fixed point equation (4). This leads
to an observation that any solution to the FastICA fixed point
equation (4) is also a solution to the exact NR algorithm (5).

IV. FASTICA AS POWER ITERATION METHOD

FastICA algorithm can be viewed as a single-vector iteration
method such as Power Iteration (PI), the Inverse Iteration (II)
and the Rayleigh Quotient Iteration (RQI) [7], [8]. This is
not a surprise since many single-vector iteration approaches
are known to stem from the Newton-Raphson method [9].
FastICA as PI method is studied in [7]. Below, we provide
further intuition on how FastICA works as a PI method.

Let us rewrite (4) as

w← [H(w)− β(w)I]w

‖[H(w)− β(w)I]w‖
, (14)

where H(w) = E
[ g(w>x)

w>x
xx>

]
∈ Rd×d is positive definite

for all conventional ICA nonlinearities including pow3, tanh
and gauss [7]. FastICA algorithm in (14) resembles a PI
method that starts with an initial guess and finds wk as an
eigenvector of matrix [H(wk)−β(wk)I]. Such an eigenvector
is a local maximizer of its corresponding eigenvalue in mag-
nitude [7]. Note that [H(w) − β(w)I] and H(w) share the
same eigenvectors. Also, the eigenvalues of [H(w)− β(w)I]
are identical to eigenvalues of H(w) shifted by a scalar
β(w). In the following lemma, we show that H(w) (resp.
[H(w) − β(w)I]) possesses an eigenvector close to w. In
addition, the eigenvalue corresponding to w, is farther apart
from the bulk of other eigenvalues.

Lemma 2. Let x be a random vector following the ICA model
(1) and let s̃ = w̃>x, where w̃ ∈ Rd is an arbitrary unit
vector. Then H(w̃) = E

[
(g(s̃)/s̃)xx>

]
can be approximated

by the following EVD.

H(w̃) ≈ E[g(s̃)s̃]w̃w̃> + E[g(s̃)/s̃](I− w̃w̃>).

Proof. Let W̃> = (w̃1 · · · w̃k · · · w̃d) be an arbitrary or-
thonormal matrix and define s̃ = W̃x. Note that, E[s̃] = 0.
Since x is pre-whitened, s̃ possesses statistically uncorre-
lated components (s̃1 · · · s̃k · · · s̃d)> i.e., E[s̃s̃>] = I. We set
f(s̃k) = g(s̃k)/s̃k and proceed as follows.

H(w̃k) = W̃>E[f(s̃k)s̃s̃>]W̃ = E[g(s̃k)s̃k]w̃kw̃
>
k +∑

j 6=k

E[f(s̃k)s̃2j ]w̃jw̃
>
j +

∑
j

∑
i 6=j

E[f(s̃k)s̃j s̃i]w̃jw̃
>
i . (15)

Using the following approximations in (15) concludes the
proof:

1) E[f(s̃k)s̃2j ] ≈ E[f(s̃k)]E[s̃2j ] = E[f(s̃k)] for j 6= k,
2) E[f(s̃k)s̃j s̃i] ≈ E[f(s̃k)]E[s̃j s̃i] = 0.

Below, we show that the above approximations are sensible.
The LHS of the first approximations can be written as :

E[(f(s̃k)s̃2j ] = E[f(s̃k)]E[s̃2j ] + cov[f(s̃k), s̃2j ]. (16)

It is sufficient to show that the covariance term in the RHS of
(16) is negligible. We use Cauchy-Schwarz inequality to write:
|cov[f(s̃k), s̃2j ]| ≤

√
var[f(s̃k)]var[s̃2j ]. Using delta method

and second-order Taylor expansion (i.e., assuming that the
reminder term is negligible), the variance of f(s̃k) can be ap-

proximated as: var[f(s̃k)] ≈
(
f ′(E[s̃k])

)2
var[s̃k] = (f ′(0))2

[10], where f ′(0) = 0 for all conventional ICA nonlinearities
including pow3, tanh and gauss. Thus, var[f(s̃k)] ≈ 0 and
consequently, cov[f(s̃k), s̃2j ] ≈ 0. The proof of the second
approximation is omitted as it is very similar to the first.

Denote by γ(w), the eigenvalue of H(w) possessing the
largest Euclidean distance to the bulk of other eigenval-
ues. As follows from [7], FastICA algorithm in (14) finds
wk as a local maximizer of δ(w) = |γ(w) − β(w)| i.e.
wk = arg max{δ(w)}. It is easy to show that, δ(w) has a
global minimum at Gaussian component. More specifically, in
the noise-free scenario, suppose that one of the independent
components is Gaussian, say sk = w>k x. Then, one may use

integration by parts, with u = g(sk) and v′ = ske
− s2k

2 , to
show that E[g(sk)sk] = E[g′(sk)]. This implies that δ(w) can
be viewed as a measure of non-Gaussianity. Later in Section V,
we use δ(w) to assess the superiority of extracted components.

V. A NEW STABLE FASTICA ALGORITHM

Here we propose a new power iteration method for FastICA,
which is numerically more stable than the original FastICA
algorithm.

Recall that [H(w) − β(w)I] in (14) and H(w) share the
same eigenvectors. In order to devise an algorithm insensitive
to finite sample errors, we do not utilized the spectral shift
in (14). Instead, we devise two parallel PI methods that start
with the same initial guess and find wk1 and wk2 as a local
maximizer and a minimizer of γ(w) respectively. Then we
assess the superiority of the two extracted components using
a measure of non-Gaussianity and discard the one that is closer
to Gaussianity.

For all conventional ICA nonlinearities including pow3,
tanh and gauss, H(w) is positive definite, i.e. γ(w) > 0
[7]. Hence, a power iteration of the form

w← H(w)w

‖H(w)w‖
=

m(w)

‖m(w)‖
, (17)

finds wk1 as a local maximizer of γ(w), where m is defined
in (3). See [11] for details of the PI method. In order to use
the PI method to find a local minimizer of γ(w), we need to
shift γ(w) by a constant scalar c, such that {∀w ∈ Sd−1 :
γ(w) − c < 0}, where Sd−1 denotes the set of unit vectors
w ∈ Rd. This way, all local minima of γ(w) become local
maxima of |γ(w)−c|, so they can be found using a PI method
of the form

w← [H(w)− cI]w
‖[H(w)− cI]w‖

, (18)

where the constant c is obtained from the following Lemma.

Lemma 3. Let x1 · · · ,xn be a data set following the ICA
model (1). Let H(w) = EFn

[ g(w>x)
w>x

xx>
]
∈ Rd×d be positive
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definite. Then {∀w ∈ Sd−1 : γ(w) − c < 0}, where c =

max
{
h(xi/‖xi‖), i ∈ {1, · · · , n}

}
,

Proof. Since any extremum of γ(w) is an extremum of
h(w) = E[(w>x)g(w>x)], the problem changes to finding
a constant c such that {∀w ∈ Sd−1 : h(w) − c < 0}.
Since h(w) ≤ max

{
(w>xi)g(w>xi), i ∈ {1, · · · , n}

}
, it

is sufficient to show that for any data point xi, the vector
wi = xi/‖xi‖ maximizes the Lagrangian:

L(w;λ) = (w>xi)g(w>xi)−
λ

2
(w>w − 1),

where λ is the Lagrange multiplier. Setting the derivative of
the Lagrangian w.r.t. w to zero gives

xig(w>xi) + xiw
>xig

′(w>xi)− λw = 0, (19)

where λ(w) = w>xig(w>xi) + (w>xi)
2g′(w>xi) is ob-

tained by multiplying both sides of (19) by w> from the left.
Substituting λ(w) in (19) and re-arranging the terms gives
wi = xi/(w

>
i xi), which holds true iff wi = xi/‖xi‖.

We use δ(w) as a measure of non-Gaussianity to select
the extracted component farther from Gaussianity. When more
than one sources need to be extracted, we follow the same
procedure as in the original k-unit deflation-based FastICA
algorithm [2] but we use (17) and (18) instead of (4). The steps
of such an algorithm are given in Algorithm 1, where Π⊥k−1
is an orthogonal projection operator that projects onto the
orthogonal complement of the subspace (of the inner product
space) spanned by the previously found FastICA demixing
vectors ŵ1, . . . , ŵk−1. Note that as shown in Algorithm 1,
(17) and (18) can be run in parallel on two computing nodes.
When only one node is available, the two loops need to be
computed in series which takes more time.

Algorithm 1: PowerICA algorithm
input : X = D̂Y: Whitened data.

(W[0])> =
(
w

[0]
1 · · · w[0]

d

)
∈ Rd×d: Random

orthonormal matrix as initial guess.
output : Ŵ = (ŵ1 · · · ŵd)>: Demixing matrix estimate.

for k = 1, . . . , d− 1 do
1 j ← 0

2 Π⊥k−1 ← I−
∑k−1

i=1 ŵiŵ
>
i

repeat Node: 1
3 j ← j + 1

4 w
[j]
k1 ←m

[j−1]
k1

5 w
[j]
k1 ← Π⊥k−1w

[j]
k1

6 w
[j]
k1 ← w

[j]
k1/‖w

[j]
k1‖

until convergence

repeat Node: 2

j ← j + 1

w
[j]
k2 ←m

[j−1]
k2 − cw[j−1]

k2

w
[j]
k2 ← Π⊥k−1w

[j]
k2

w
[j]
k2 ← w

[j]
k2/‖w

[j]
k2‖

until convergence

7 ŵk ← use δ(w) to choose between w
[j]
k1 and w

[j]
k2, i.e. the one

with larger δ(w)

8 ŵd ← Π⊥d−1w
[0]
d /‖Π⊥d−1w

[0]
d ‖

VI. NUMERICAL EXAMPLES

We compare the convergence of the proposed PowerICA
method with the deflation-based FastICA algorithm with non-
linearities pow3, tanh and gauss. In our simulation set-

up, the data is a mixture of d = 3 sources possessing
Laplacian, Uniform and Gaussian distribution with zero mean
and unit variance. We use the same initial start W[0] for
both algorithms, where W[0] is a random d × d matrix
with elements from N (0, 1) distribution. Based on 1000 MC
runs we report the number of non-convergent runs. We also
compute the quality of the separation obtained by demixing
matrix estimator Ŵ using interference to signal ratio index

ISR(V̂) =
1

d(d− 1)

{ d∑
i=1

( d∑
j=1

(v̂ij)
2

max(v̂i·)2
− 1
)}
, (20)

where in the ideal case, matrix V̂ = ŴA is a scaled
and permuted copy of an identity matrix. Notation max(v̂i·)
denotes the largest element in each row of V̂, which represents
the signal power. The other elements of V̂ represent the
interference power. The ISR obtains value in [0, 1] where 0
implies perfect separation, whereas the maximal value 1 is
pathological and obtained when V̂ is non-singular with v̂ij
equal in each row i = 1, . . . , d. Recall that the asymptotic
efficiency of the deflation-based FastICA estimates depends
heavily on the order of extraction of the sources [12], [13].
Thus, in each MC run, we verify that the extraction order of
sources is the same in both methods.

Table 1 illustrates the numerical stability of the proposed
PowerICA algorithm. The “Failure” is defined as the number
of non-convergent runs out of 1000 Monte Carlo trials. For
example, in the case of n = 20 with d = 3 and nonlinearity
pow3, the FastICA algorithm failed to converge 705 times out
of 1000 trials. In contrast, PowerICA has always converged
to a valid solution, i.e. ISR < 0.22, even with small number
of samples, e.g. n = 20 and no failure occurs. The ISR value
is averaged only over the cases that the FastICA algorithm
converged. For PowerICA, the average ISR value over all 1000
MC runs is reported in parentheses.

TABLE I: Number of non-convergent runs and the average ISR values of the
FastICA and the PowerICA algorithms for different values of n and d = 3.

FastICA PowerICA
n pow3 tanh gauss pow3 tanh gauss

Fails 20 705 589 597 0 0 0
50 529 400 402 0 0 0
100 294 216 212 0 0 0
200 130 92 105 0 0 0

ISR 20 0.21 0.20 0.19 0.21(0.22) 0.20(0.21) 0.19(0.20)
50 0.11 0.09 0.10 0.11(0.13) 0.09(0.11) 0.10(0.11)
100 0.05 0.04 0.04 0.05(0.06) 0.04(0.04) 0.04(0.04)
200 0.02 0.01 0.01 0.02(0.02) 0.01(0.01) 0.01(0.01)

VII. CONCLUSION

In this letter, we provide an alternate derivation of the Fas-
tICA fixed-point algorithm. Note that FastICA algorithm was
originally derived in [1], [2] as an approximate NR-update.
Our derivation dose not need the unnecessary simplifying
assumptions used in the original derivation. In addition, we
propose a novel parallel ICA algorithm based on the power
method. We showed that our proposed method is remarkably
more stable than the FastICA algorithm and provides accept-
able results event with small number of data points.



5

REFERENCES

[1] A. Hyvärinen, “Fast and robust fixed-point algorithm for independent
component analysis,” IEEE Trans. on Neural Networks, vol. 10, pp.
626–634, 1999.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: John Wiley & Sons, 2001.

[3] T.-W. Lee, Independent component analysis. Springer, 1998.
[4] P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance analysis of

the FastICA algorithm and Cramér-Rao bounds for linear independent
component analysis,” IEEE Transactions on Signal Processing, vol. 54,
no. 4, pp. 1189–1203, April 2006.

[5] J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen, “Deflation-based
FastICA with adaptive choices of nonlinearities,” IEEE Transactions on
Signal Processing, vol. 62, no. 21, pp. 5716–5724, Nov 2014.

[6] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.
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